材料科学
甲脒
三碘化物
纳米片
纳米材料
钙钛矿(结构)
异质结
微晶
纳米技术
外延
能量转换效率
光电子学
结晶
量子点
化学工程
色素敏化染料
冶金
化学
物理化学
工程类
电解质
图层(电子)
电极
作者
Xuanling Liu,Ziyi Wu,Han Zhong,Xuanyu Wang,Jianfei Yang,Ziling Zhang,Jianhua Han,Dan Oron,Hong Lin
标识
DOI:10.1002/adfm.202304140
摘要
Abstract Nanomaterials such as quantum dots and 2D materials have been widely used to improve the performance of perovskite solar cells due to their favorable optical properties, conductivity, and stability. Nevertheless, the interfacial crystal structures between perovskites and nanomaterials have always been ignored while large mismatches can result in a significant number of defects within solar cells. In this work, cubic PbS nanosheets with (200) preferred crystal planes are synthesized through anisotropy growth. Based on the similar crystal structure between cubic PbS (200) and cubic‐phase formamidinium lead triiodide ( α ‐FAPbI 3 ) (200), a nanoepitaxial PbS nanosheets‐FAPbI 3 heterostructure with low defect density is observed. Attribute to the epitaxial growth, PbS nanosheets‐FAPbI 3 hybrid polycrystalline films show decreased defects and better crystallization. Optimized perovskite solar cells perform both improved efficiency and stability, retaining 90% of initial photovoltaic conversion efficiency after being stored at 20 °C and 20% RH for 2500 h. Notably, the significantly improved stability is ascribed to the interfacial compression strain and chemical bonding between (200) planes of PbS nanosheets and α ‐FAPbI 3 (200). This study provides insight into high‐performance perovskite solar cells achieved by manipulating nanomaterial surfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI