已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Seismic fragility analysis using stochastic polynomial chaos expansions

脆弱性 多项式混沌 计算机科学 不确定度量化 参数统计 背景(考古学) 替代模型 蒙特卡罗方法 数学优化 应用数学 数学 地质学 机器学习 古生物学 化学 统计 物理化学
作者
Xujia Zhu,Marco Broccardo,Bruno Sudret
出处
期刊:Probabilistic Engineering Mechanics [Elsevier BV]
卷期号:72: 103413-103413 被引量:17
标识
DOI:10.1016/j.probengmech.2023.103413
摘要

Within the performance-based earthquake engineering (PBEE) framework, the fragility model plays a pivotal role. Such a model represents the probability that the engineering demand parameter (EDP) exceeds a certain safety threshold given a set of selected intensity measures (IMs) that characterize the earthquake load. The-state-of-the art methods for fragility computation rely on full non-linear time–history analyses. Within this perimeter, there are two main approaches: the first relies on the selection and scaling of recorded ground motions; the second, based on random vibration theory, characterizes the seismic input with a parametric stochastic ground motion model (SGMM). The latter case has the great advantage that the problem of seismic risk analysis is framed as a forward uncertainty quantification problem. However, running classical full-scale Monte Carlo simulations is intractable because of the prohibitive computational cost of typical finite element models. Therefore, it is of great interest to define fragility models that link an EDP of interest with the SGMM parameters — which are regarded as IMs in this context. The computation of such fragility models is a challenge on its own and, despite a few recent studies, there is still an important research gap in this domain. This comes with no surprise as classical surrogate modeling techniques cannot be applied due to the stochastic nature of SGMM. This study tackles this computational challenge by using stochastic polynomial chaos expansions to represent the statistical dependence of EDP on IMs. More precisely, this surrogate model estimates the full conditional probability distribution of EDP conditioned on IMs. We compare the proposed approach with some state-of-the-art methods in two case studies. The numerical results show that the new method prevails over its competitors in estimating both the conditional distribution and the fragility functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小学神发布了新的文献求助10
1秒前
2秒前
懵懂的莺发布了新的文献求助10
4秒前
albertwang完成签到 ,获得积分10
6秒前
6秒前
无花果应助小小学神采纳,获得10
6秒前
6秒前
7秒前
aventurine发布了新的文献求助10
7秒前
9秒前
10秒前
优雅草丛发布了新的文献求助10
11秒前
PAIDAXXXX发布了新的文献求助10
11秒前
把握青春发布了新的文献求助10
13秒前
心碎的黄焖鸡完成签到 ,获得积分10
13秒前
keock发布了新的文献求助10
14秒前
初雪完成签到,获得积分10
15秒前
火以敬完成签到,获得积分10
16秒前
希望天下0贩的0应助songyl采纳,获得10
17秒前
明钟达发布了新的文献求助10
18秒前
小马甲应助优雅草丛采纳,获得10
19秒前
20秒前
20秒前
果冻完成签到 ,获得积分10
23秒前
小小学神发布了新的文献求助10
24秒前
27秒前
丘比特应助把握青春采纳,获得10
28秒前
Ava应助krajicek采纳,获得10
29秒前
小新发布了新的文献求助10
30秒前
30秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
albertwang关注了科研通微信公众号
31秒前
32秒前
ding应助旅梦采纳,获得10
32秒前
33秒前
keock完成签到,获得积分10
33秒前
SYLH应助wodetaiyangLLL采纳,获得10
35秒前
Alex应助研友_ZbbVlZ采纳,获得30
37秒前
ciao发布了新的文献求助10
38秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Semiconductor devices : pioneering papers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862259
求助须知:如何正确求助?哪些是违规求助? 3404782
关于积分的说明 10641357
捐赠科研通 3128045
什么是DOI,文献DOI怎么找? 1725013
邀请新用户注册赠送积分活动 830762
科研通“疑难数据库(出版商)”最低求助积分说明 779429