RidgeSketch: A Fast Sketching Based Solver for Large Scale Ridge Regression

素描 计算机科学 解算器 收敛速度 算法 次线性函数 理论计算机科学 数学 程序设计语言 离散数学 计算机网络 频道(广播)
作者
Nidham Gazagnadou,Mark Ibrahim,Robert M. Gower
出处
期刊:SIAM Journal on Matrix Analysis and Applications [Society for Industrial and Applied Mathematics]
卷期号:43 (3): 1440-1468 被引量:5
标识
DOI:10.1137/21m1422963
摘要

We propose new variants of the sketch-and-project method for solving large scale ridge regression problems. First, we propose a new momentum alternative and provide a theorem showing it can speed up the convergence of sketch-and-project, through a fast sublinear convergence rate. We carefully delimit under what settings this new sublinear rate is faster than the previously known linear rate of convergence of sketch-and-project without momentum. Second, we consider combining the sketch-and-project method with new modern sketching methods such as Count sketch, SubCount sketch (a new method we propose), and subsampled Hadamard transforms. We show experimentally that when combined with the sketch-and-project method, the (Sub)Count sketch is very effective on sparse data and the standard Subsample sketch is effective on dense data. Indeed, we show that these sketching methods, combined with our new momentum scheme, result in methods that are competitive even when compared to the conjugate gradient method on real large scale data. On the contrary, we show the subsampled Hadamard transform does not perform well in this setting, despite the use of fast Hadamard transforms, and nor do recently proposed acceleration schemes work well in practice. To support all of our experimental findings, and invite the community to validate and extend our results, with this paper we are also releasing an open source software package: RidgeSketch. We designed this object-oriented package in Python for testing sketch-and-project methods and benchmarking ridge regression solvers. RidgeSketch is highly modular, and new sketching methods can easily be added as subclasses. We provide code snippets of our package in the appendix.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
胖莹完成签到 ,获得积分10
4秒前
CodeCraft应助紫金大萝卜采纳,获得10
5秒前
科研通AI6应助zjgjnu采纳,获得20
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
花痴的手套完成签到 ,获得积分10
7秒前
MCY发布了新的文献求助10
9秒前
0101发布了新的文献求助10
9秒前
无花果应助zzx采纳,获得10
9秒前
九三完成签到,获得积分10
10秒前
caoyuya123完成签到 ,获得积分10
12秒前
12秒前
200308156313发布了新的文献求助10
12秒前
杨琳完成签到,获得积分10
13秒前
15秒前
WXY发布了新的文献求助10
16秒前
WZY16666完成签到,获得积分10
16秒前
16秒前
领导范儿应助photodetectors采纳,获得10
17秒前
19秒前
19秒前
tsumugi发布了新的文献求助10
19秒前
20秒前
科研公主完成签到,获得积分10
20秒前
21秒前
zhaokkkk完成签到,获得积分10
22秒前
Olivia发布了新的文献求助10
22秒前
杨琳发布了新的文献求助10
23秒前
sad完成签到,获得积分10
23秒前
HJJHJH发布了新的文献求助10
24秒前
Alanni发布了新的文献求助10
24秒前
FeiFeiup发布了新的文献求助10
25秒前
耿昊发布了新的文献求助10
25秒前
cora完成签到 ,获得积分10
25秒前
无极微光应助高高雁枫采纳,获得20
26秒前
科研小白完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642428
求助须知:如何正确求助?哪些是违规求助? 4758826
关于积分的说明 15017538
捐赠科研通 4801013
什么是DOI,文献DOI怎么找? 2566317
邀请新用户注册赠送积分活动 1524459
关于科研通互助平台的介绍 1483969