Improving transferability of adversarial examples with powerful affine-shear transformation attack

对抗制 可转让性 仿射变换 计算机科学 转化(遗传学) 黑匣子 深度学习 人工智能 图像(数学) 透视图(图形) 机器学习 深层神经网络 过程(计算) 数据挖掘 模式识别(心理学) 数学 生物化学 化学 罗伊特 纯数学 基因 操作系统
作者
X. Wang,Chunguang Huang,Hai Cheng
出处
期刊:Computer Standards & Interfaces [Elsevier BV]
卷期号:84: 103693-103693 被引量:7
标识
DOI:10.1016/j.csi.2022.103693
摘要

Image classification models based on deep neural networks have made great improvements on various tasks, but they are still vulnerable to adversarial examples that could increase the possibility of misclassification. Various methods are proposed to generate adversarial examples under white-box attack circumstances that have achieved a high success rate. However, most existing adversarial attacks only achieve poor transferability when attacking other unknown models with the black-box scenario settings. In this paper, we propose a new method that generates adversarial examples based on affine-shear transformation from the perspective of deep model input layers and maximizes the loss function during each iteration. This method could improve the transferability and the input diversity of adversarial examples, and we also optimize the above adversarial examples generation process with Nesterov accelerated gradient. Extensive experiments on ImageNet Dataset indicate that our proposed method could exhibit higher transferability and achieve higher attack success rates on both single model settings and ensemble-model settings. It can also combine with other gradient-based methods and image transformation-based methods to further build more powerful attacks. • The existence of adversarial examples would pose to society and security issues are analyzed. • Existing white-box and black-box attack methods and some defenses methods are listed. • The proposed AST can integrate into NI-FGSM to build more powerful attacks. • It can also improving the transferability of adversarial examples under black-box settings. • We combined AST with other image transformation-based methods, denoted as AST-NI-TI-DIM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子弹K完成签到,获得积分10
5秒前
5秒前
gloval完成签到,获得积分10
6秒前
ding应助羊羊采纳,获得10
7秒前
丘比特应助无可无不可采纳,获得10
9秒前
时尚语梦完成签到 ,获得积分10
10秒前
hautzhl发布了新的文献求助10
11秒前
13秒前
wandan发布了新的文献求助20
13秒前
星宫金魁发布了新的文献求助150
13秒前
科研通AI5应助杨乐多采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
落叶解三秋完成签到,获得积分10
16秒前
正在下雨完成签到,获得积分10
17秒前
Clarity发布了新的文献求助10
18秒前
xdm完成签到,获得积分10
18秒前
伟@完成签到,获得积分10
18秒前
18秒前
伶俐绿海完成签到 ,获得积分10
19秒前
七七完成签到,获得积分10
20秒前
趣多多发布了新的文献求助10
21秒前
笑柳发布了新的文献求助10
21秒前
羊羊发布了新的文献求助10
22秒前
22秒前
科研通AI5应助yesiDo采纳,获得10
24秒前
guozizi发布了新的文献求助10
27秒前
老广完成签到,获得积分10
27秒前
碧蓝青梦发布了新的文献求助10
27秒前
彩色的紫丝完成签到 ,获得积分10
28秒前
思源应助科研通管家采纳,获得30
28秒前
28秒前
打打应助科研通管家采纳,获得10
28秒前
852应助科研通管家采纳,获得10
28秒前
乐乐应助科研通管家采纳,获得10
29秒前
bkagyin应助科研通管家采纳,获得10
29秒前
顾矜应助科研通管家采纳,获得10
29秒前
29秒前
慕青应助奋斗的紫霜采纳,获得10
32秒前
32秒前
ee完成签到,获得积分10
33秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867343
求助须知:如何正确求助?哪些是违规求助? 3409640
关于积分的说明 10664507
捐赠科研通 3133927
什么是DOI,文献DOI怎么找? 1728591
邀请新用户注册赠送积分活动 833038
科研通“疑难数据库(出版商)”最低求助积分说明 780517