已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detection of sarcopenia using deep learning-based artificial intelligence body part measure system (AIBMS)

肌萎缩 切断 分割 人工智能 计算机科学 模式识别(心理学) 机器学习 医学 内科学 物理 量子力学
作者
Shangzhi Gu,Lixue Wang,Rong Han,Xiaohong Liu,Yizhe Wang,Ting Chen,Zhuozhao Zheng
出处
期刊:Frontiers in Physiology [Frontiers Media SA]
卷期号:14: 1092352-1092352 被引量:17
标识
DOI:10.3389/fphys.2023.1092352
摘要

Background: Sarcopenia is an aging syndrome that increases the risks of various adverse outcomes, including falls, fractures, physical disability, and death. Sarcopenia can be diagnosed through medical images-based body part analysis, which requires laborious and time-consuming outlining of irregular contours of abdominal body parts. Therefore, it is critical to develop an efficient computational method for automatically segmenting body parts and predicting diseases. Methods: In this study, we designed an Artificial Intelligence Body Part Measure System (AIBMS) based on deep learning to automate body parts segmentation from abdominal CT scans and quantification of body part areas and volumes. The system was developed using three network models, including SEG-NET, U-NET, and Attention U-NET, and trained on abdominal CT plain scan data. Results: This segmentation model was evaluated using multi-device developmental and independent test datasets and demonstrated a high level of accuracy with over 0.9 DSC score in segment body parts. Based on the characteristics of the three network models, we gave recommendations for the appropriate model selection in various clinical scenarios. We constructed a sarcopenia classification model based on cutoff values (Auto SMI model), which demonstrated high accuracy in predicting sarcopenia with an AUC of 0.874. We used Youden index to optimize the Auto SMI model and found a better threshold of 40.69. Conclusion: We developed an AI system to segment body parts in abdominal CT images and constructed a model based on cutoff value to achieve the prediction of sarcopenia with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123y发布了新的文献求助10
刚刚
fanfan发布了新的文献求助10
1秒前
2秒前
开心惜梦发布了新的文献求助50
4秒前
Rain完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
积极的明天完成签到,获得积分10
6秒前
Maria完成签到 ,获得积分10
6秒前
6秒前
海贵完成签到,获得积分10
6秒前
JAJATAO发布了新的文献求助10
7秒前
打打应助ZHAO采纳,获得10
8秒前
9秒前
丑小鸭发布了新的文献求助10
9秒前
英姑应助YMing采纳,获得10
9秒前
俭朴的跳跳糖完成签到 ,获得积分10
9秒前
10秒前
10秒前
小谢完成签到 ,获得积分10
11秒前
13秒前
nono完成签到 ,获得积分10
13秒前
千诺完成签到 ,获得积分10
14秒前
14秒前
14秒前
15秒前
柚哦发布了新的文献求助10
16秒前
Twonej应助automan采纳,获得50
17秒前
浮游应助科研通管家采纳,获得10
18秒前
归尘发布了新的文献求助10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
乐空思应助科研通管家采纳,获得30
18秒前
明亮冰枫应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
ccm应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644032
求助须知:如何正确求助?哪些是违规求助? 4762682
关于积分的说明 15023283
捐赠科研通 4802257
什么是DOI,文献DOI怎么找? 2567397
邀请新用户注册赠送积分活动 1525099
关于科研通互助平台的介绍 1484620