Feedback‐based self‐learning in large‐scale conversational AI agents

计算机科学 注释 自然语言理解 人工智能 范围(计算机科学) 对话系统 机制(生物学) 机器学习 自然语言处理 自然语言 万维网 对话框 程序设计语言 哲学 认识论
作者
Pragaash Ponnusamy,Alireza Roshan Ghias,Yi Yi,Benjamin Yao,Chenlei Guo,Ruhi Sarikaya
出处
期刊:Ai Magazine [Association for the Advancement of Artificial Intelligence]
卷期号:42 (4): 43-56 被引量:20
标识
DOI:10.1609/aaai.12025
摘要

Abstract Today, most of the large‐scale conversational AI agents such as Alexa, Siri, or Google Assistant are built using manually annotated data to train the different components of the system including automatic speech recognition (ASR), natural language understanding (NLU), and entity resolution (ER). Typically, the accuracy of the machine learning models in these components are improved by manually transcribing and annotating data. As the scope of these systems increase to cover more scenarios and domains, manual annotation to improve the accuracy of these components becomes prohibitively costly and time consuming. In this paper, we propose a system that leverages customer/system interaction feedback signals to automate learning without any manual annotation. Users of these systems tend to modify a previous query in hopes of fixing an error in the previous turn to get the right results. These reformulations, which are often preceded by defective experiences caused by either errors in ASR, NLU, ER, or the application. In some cases, users may not properly formulate their requests (e.g., providing partial title of a song), but gleaning across a wider pool of users and sessions reveals the underlying recurrent patterns. Our proposed self‐learning system automatically detects the errors, generates reformulations, and deploys fixes to the runtime system to correct different types of errors occurring in different components of the system. In particular, we propose leveraging an absorbing Markov Chain model as a collaborative filtering mechanism in a novel attempt to mine these patterns, and coupling it with a guardrail rewrite selection mechanism that reactively evaluates these fixes using feedback friction data. We show that our approach is highly scalable, and able to learn reformulations that reduce Alexa‐user errors by pooling anonymized data across millions of customers. The proposed self‐learning system achieves a win‐loss ratio of 11.8 and effectively reduces the defect rate by more than 30 percent on utterance level reformulations in our production A/B tests. To the best of our knowledge, this is the first self‐learning large‐scale conversational AI system in production.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
认真晓灵完成签到,获得积分10
2秒前
4秒前
Herman完成签到,获得积分20
6秒前
7秒前
科目三应助聆风采纳,获得10
8秒前
11秒前
13秒前
华仔应助ZIS采纳,获得10
14秒前
15秒前
16秒前
17秒前
Bio应助Kimi采纳,获得30
18秒前
聆风发布了新的文献求助10
18秒前
孟愿完成签到,获得积分10
19秒前
酷酷翅膀发布了新的文献求助10
19秒前
20秒前
Amy完成签到 ,获得积分10
20秒前
21秒前
21秒前
21秒前
星辰大海应助二毛采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
小马甲应助djbj2022采纳,获得10
23秒前
自由的雁完成签到 ,获得积分10
24秒前
zy发布了新的文献求助10
24秒前
wyw完成签到 ,获得积分10
24秒前
24秒前
烟花应助愤怒的山兰采纳,获得10
25秒前
ZIS发布了新的文献求助10
26秒前
刻苦羽毛完成签到 ,获得积分10
27秒前
Jr L发布了新的文献求助10
27秒前
热吻街头发布了新的文献求助10
27秒前
28秒前
29秒前
英俊的铭应助帅气楼房采纳,获得30
30秒前
沉静海安完成签到 ,获得积分10
32秒前
咪咪完成签到 ,获得积分10
37秒前
Owen应助wxy采纳,获得10
37秒前
nhscyhy发布了新的文献求助10
37秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4241569
求助须知:如何正确求助?哪些是违规求助? 3775186
关于积分的说明 11855281
捐赠科研通 3430131
什么是DOI,文献DOI怎么找? 1882643
邀请新用户注册赠送积分活动 934528
科研通“疑难数据库(出版商)”最低求助积分说明 841047