Feedback‐based self‐learning in large‐scale conversational AI agents

计算机科学 注释 自然语言理解 人工智能 范围(计算机科学) 对话系统 机制(生物学) 机器学习 自然语言处理 自然语言 万维网 对话框 程序设计语言 认识论 哲学
作者
Pragaash Ponnusamy,Alireza Roshan Ghias,Yi Yi,Benjamin Yao,Chenlei Guo,Ruhi Sarikaya
出处
期刊:Ai Magazine [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:42 (4): 43-56 被引量:20
标识
DOI:10.1609/aaai.12025
摘要

Abstract Today, most of the large‐scale conversational AI agents such as Alexa, Siri, or Google Assistant are built using manually annotated data to train the different components of the system including automatic speech recognition (ASR), natural language understanding (NLU), and entity resolution (ER). Typically, the accuracy of the machine learning models in these components are improved by manually transcribing and annotating data. As the scope of these systems increase to cover more scenarios and domains, manual annotation to improve the accuracy of these components becomes prohibitively costly and time consuming. In this paper, we propose a system that leverages customer/system interaction feedback signals to automate learning without any manual annotation. Users of these systems tend to modify a previous query in hopes of fixing an error in the previous turn to get the right results. These reformulations, which are often preceded by defective experiences caused by either errors in ASR, NLU, ER, or the application. In some cases, users may not properly formulate their requests (e.g., providing partial title of a song), but gleaning across a wider pool of users and sessions reveals the underlying recurrent patterns. Our proposed self‐learning system automatically detects the errors, generates reformulations, and deploys fixes to the runtime system to correct different types of errors occurring in different components of the system. In particular, we propose leveraging an absorbing Markov Chain model as a collaborative filtering mechanism in a novel attempt to mine these patterns, and coupling it with a guardrail rewrite selection mechanism that reactively evaluates these fixes using feedback friction data. We show that our approach is highly scalable, and able to learn reformulations that reduce Alexa‐user errors by pooling anonymized data across millions of customers. The proposed self‐learning system achieves a win‐loss ratio of 11.8 and effectively reduces the defect rate by more than 30 percent on utterance level reformulations in our production A/B tests. To the best of our knowledge, this is the first self‐learning large‐scale conversational AI system in production.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助安静曼云采纳,获得10
刚刚
1秒前
marcy发布了新的文献求助10
2秒前
小江完成签到,获得积分10
2秒前
MCQ发布了新的文献求助10
2秒前
打打应助ZXC采纳,获得10
2秒前
Ryannnn完成签到,获得积分10
3秒前
66发布了新的文献求助10
3秒前
4秒前
寒冬发布了新的文献求助10
4秒前
5秒前
小何又学累了完成签到 ,获得积分10
5秒前
6秒前
蔡从安发布了新的文献求助10
6秒前
7秒前
7秒前
元神发布了新的文献求助10
8秒前
9秒前
Tonsil01完成签到,获得积分10
9秒前
Harry发布了新的文献求助30
10秒前
芙芙发布了新的文献求助10
10秒前
ywl应助寒冬采纳,获得10
10秒前
10秒前
浮游应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
11秒前
汉堡包应助科研通管家采纳,获得30
11秒前
天天快乐应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
浮游应助科研通管家采纳,获得10
13秒前
mwn发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5696032
求助须知:如何正确求助?哪些是违规求助? 5104917
关于积分的说明 15217942
捐赠科研通 4852136
什么是DOI,文献DOI怎么找? 2602971
邀请新用户注册赠送积分活动 1554602
关于科研通互助平台的介绍 1512662