Experimental and numerical investigation of proppant embedment and conductivity reduction within a fracture in the Caney Shale, Southern Oklahoma, USA

油页岩 嵌入 水力压裂 石油工程 地质学 断裂(地质) 电导率 导水率 岩土工程 页岩油 脆性 磁导率 多孔性 可再生能源 环境科学 材料科学 土壤科学 复合材料 工程类 古生物学 化学 物理化学 遗传学 生物 电气工程 土壤水分
作者
Allan Katende,Connor Allen,Jonny Rutqvist,Seiji Nakagawa,Mileva Radonjic
出处
期刊:Fuel [Elsevier]
卷期号:341: 127571-127571 被引量:2
标识
DOI:10.1016/j.fuel.2023.127571
摘要

The current worldwide energy supply is insufficient to meet the rising demand. As a result, the energy prices are expected to keep soaring despite the recent increases in a variety of renewable energy resources. Although not renewable, shale oil and gas — “unconventional” hydrocarbon resources are relatively clean forms of energy resources, which still hold a vast share of the energy market. For many oil and gas companies, meeting profitable production goals from shale reservoirs is sometimes challenging, due to the loss of fracture conductivity and premature declines in the production. In this paper we investigate the stress-dependent changes in the hydraulic conductivity of proppant-filled fractures and mechanical fracture–proppant interactions in Caney Shale, a calcareous, organic-rich mudrock, through laboratory experiments and numerical modeling. American Petroleum Institute (API) fracture conductivity tests were conducted using 2% KCl on five locations within the Caney Shale that consisted of selecting three brittle (reservoir) zones and two ductile zones. Confining pressures ranged from 1,000 psi to 12,000 psi at 210 °F. Conductivity, permeability as well as embedment were measured during the test. Also, an additional, laboratory in-situ visualization test was conducted to examine the detailed proppant-shale matrix interaction under elevated stress (3,920 psi effective stress) and temperature (252 °F), with a synthetic reservoir fluid. Our experimental results have confirmed that improved fracture conductivity is attributed to proppant size, and that the increase in porosity of the proppant pack, closure pressure changes and the reduction in fracture conductivity are a function of many factors such as fracture closure stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Boyle发布了新的文献求助10
刚刚
Jasper应助一辉采纳,获得20
1秒前
归诚完成签到,获得积分10
3秒前
114422完成签到,获得积分10
4秒前
爆米花应助奈何采纳,获得10
4秒前
7秒前
充电宝应助slj采纳,获得10
11秒前
moonlight发布了新的文献求助10
11秒前
Venus完成签到,获得积分10
19秒前
科研通AI2S应助要没时间了采纳,获得10
21秒前
23秒前
Maestro_S应助科研通管家采纳,获得10
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
xiejuan应助科研通管家采纳,获得10
23秒前
完美世界应助科研通管家采纳,获得10
23秒前
我是老大应助科研通管家采纳,获得10
23秒前
乐乐应助科研通管家采纳,获得10
23秒前
科研通AI2S应助wangxx采纳,获得10
24秒前
奈何完成签到,获得积分10
25秒前
冷酷的啤酒完成签到,获得积分10
28秒前
30秒前
chengmin发布了新的文献求助10
32秒前
李健的小迷弟应助黄sir采纳,获得30
36秒前
一辉发布了新的文献求助20
37秒前
顾矜应助chengmin采纳,获得30
39秒前
晴天完成签到,获得积分10
41秒前
雷霆康康完成签到,获得积分10
49秒前
QQ发布了新的文献求助10
51秒前
Luke完成签到,获得积分10
52秒前
无花果应助舒适的世界采纳,获得10
53秒前
55秒前
MG_XSJ完成签到,获得积分10
1分钟前
123发布了新的文献求助10
1分钟前
gjww应助皮皮采纳,获得10
1分钟前
1分钟前
1分钟前
金轩发布了新的文献求助10
1分钟前
1分钟前
高分求助中
The Illustrated History of Gymnastics 800
The Bourse of Babylon : market quotations in the astronomical diaries of Babylonia 680
Herman Melville: A Biography (Volume 1, 1819-1851) 600
Division and square root. Digit-recurrence algorithms and implementations 500
機能營養學前瞻(3 Ed.) 300
Improving the ductility and toughness of Fe-Cr-B cast irons 300
Problems of transcultural communication 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2507151
求助须知:如何正确求助?哪些是违规求助? 2158642
关于积分的说明 5525612
捐赠科研通 1879091
什么是DOI,文献DOI怎么找? 934656
版权声明 564038
科研通“疑难数据库(出版商)”最低求助积分说明 499182