Community-enhanced Link Prediction in Dynamic Networks

计算机科学 数据挖掘 相似性(几何) 集合(抽象数据类型) 特征(语言学) 机器学习 人工智能 动态网络分析 计算机网络 语言学 图像(数学) 哲学 程序设计语言
作者
Mukesh Kumar,Shivansh Mishra,Shashank Sheshar Singh,Bhaskar Biswas
出处
期刊:ACM Transactions on The Web [Association for Computing Machinery]
卷期号:18 (2): 1-32 被引量:16
标识
DOI:10.1145/3580513
摘要

The growing popularity of online social networks is quite evident nowadays and provides an opportunity to allow researchers in finding solutions for various practical applications. Link prediction is the technique of understanding network structure and identifying missing and future links in social networks. One of the well-known classes of methods in link prediction is a similarity-based method, which uses local and global topological information of the network to predict missing links. Some methods also exist based on quasi-local features to achieve a trade-off between local and global information on static networks. These quasi-local similarity-based methods are not best suited for considering community information in dynamic networks, failing to balance accuracy and efficiency. Therefore, a community-enhanced framework is presented in this article to predict missing links on dynamic social networks. First, a link prediction framework is presented to predict missing links using parameterized influence regions of nodes and their contribution in community partitions. Then, a unique feature set is generated using local, global, and quasi-local similarity-based as well as community information-based features. This feature set is further optimized using scoring-based feature selection methods to select only the most relevant features. Finally, four machine learning-based classification models are used for link prediction. The experiments are performed on six well-known dynamic networks and three performance metrics, and the results demonstrate that the proposed method outperforms the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
身处人海完成签到,获得积分10
2秒前
小二郎应助科研通管家采纳,获得10
3秒前
3秒前
无花果应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
Leah给Leah的求助进行了留言
3秒前
3秒前
电麻木完成签到,获得积分20
3秒前
4秒前
大孙发布了新的文献求助10
5秒前
不得发布了新的文献求助10
5秒前
Bravetwq完成签到,获得积分10
5秒前
6秒前
庾稀完成签到,获得积分20
6秒前
打打应助YONG采纳,获得10
7秒前
不安青牛应助白日梦采纳,获得20
7秒前
zy发布了新的文献求助10
7秒前
研友_VZG7GZ应助hj456采纳,获得10
7秒前
英姑应助DY采纳,获得10
8秒前
8秒前
8秒前
桐桐应助大孙采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
波波鱼发布了新的文献求助10
10秒前
乐乐完成签到,获得积分10
10秒前
10秒前
11秒前
研友_kngjrL发布了新的文献求助30
12秒前
zhang发布了新的文献求助10
12秒前
rudjs发布了新的文献求助10
12秒前
要减肥曼容完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4474698
求助须知:如何正确求助?哪些是违规求助? 3933372
关于积分的说明 12203591
捐赠科研通 3587878
什么是DOI,文献DOI怎么找? 1972534
邀请新用户注册赠送积分活动 1010264
科研通“疑难数据库(出版商)”最低求助积分说明 903868