SAR Image Change Detection in Spatial-Frequency Domain Based on Attention Mechanism and Gated Linear Unit

计算机科学 变更检测 人工智能 合成孔径雷达 模式识别(心理学) 聚类分析 特征(语言学) 特征提取 频域 目标检测 计算机视觉 语言学 哲学
作者
Chunhui Zhao,Lirui Ma,Lu Wang,Tomoaki Ohtsuki,P. Takis Mathiopoulos,Yong Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:12
标识
DOI:10.1109/lgrs.2023.3238112
摘要

Change detection based on synthetic aperture radar (SAR) images is an important application in the remote-sensing technology field. However, the lack of labeled data has been a difficult problem in SAR image detection, especially for pixel-level change detection. In this letter, we propose a novel unsupervised change detection algorithm, which improves the detection accuracy by exploring features from both spatial and frequency domains of SAR images. In particular, first clustering is used as preclassification to obtain pseudo-labels and then by incorporating classifiers and pseudo-labels in terms of feature learning, a novel unsupervised detection algorithm is proposed. To improve the sensitivity of the algorithm to changed details and enhance the antinoise ability of the change detection network, the attention mechanism (AM) is integrated into the network to fully extract important spatial structure information. Moreover, a multidomain fusion module is proposed to integrate spatial and frequency domain features into complementary feature representations. This module contains multiregion features weighted by the channel-spatial AM and deep features filtered out by the gated linear units (GLUs) in the frequency domain. To verify the effectiveness of the proposed algorithm, it is compared against the other four SAR image change detection algorithms using three real datasets. The experimental results show that the proposed method outperforms the other four algorithms in terms of percent correct classification (PCC) and Kappa coefficient (KC).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小冉完成签到,获得积分10
1秒前
华仔完成签到,获得积分10
1秒前
十三完成签到,获得积分10
2秒前
2秒前
2秒前
在水一方应助草莓采纳,获得10
3秒前
3秒前
4秒前
GG发布了新的文献求助10
4秒前
4秒前
4秒前
奇异喵发布了新的文献求助10
5秒前
蜉蝣应助JJ采纳,获得10
6秒前
迷路的祥发布了新的文献求助10
7秒前
8秒前
莫西莫西完成签到 ,获得积分10
8秒前
8秒前
快乐的板凳完成签到,获得积分10
9秒前
宇文听南发布了新的文献求助10
9秒前
9秒前
9秒前
老板来杯冷咖啡完成签到,获得积分10
9秒前
善学以致用应助宓天问采纳,获得10
10秒前
11秒前
在水一方应助从容的野狼采纳,获得50
11秒前
11秒前
mnc发布了新的文献求助10
13秒前
哇samm发布了新的文献求助10
14秒前
Joyan发布了新的文献求助10
15秒前
不想干活应助羲月采纳,获得10
16秒前
KanmenRider发布了新的文献求助10
16秒前
Mid完成签到,获得积分10
17秒前
17秒前
shiyin发布了新的文献求助20
17秒前
20秒前
希望天下0贩的0应助LIN_YX采纳,获得10
21秒前
莫西莫西发布了新的文献求助10
21秒前
luana发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4525373
求助须知:如何正确求助?哪些是违规求助? 3965709
关于积分的说明 12290946
捐赠科研通 3630068
什么是DOI,文献DOI怎么找? 1997726
邀请新用户注册赠送积分活动 1034093
科研通“疑难数据库(出版商)”最低求助积分说明 923681