Comparison of quantitative susceptibility mapping methods for iron-sensitive susceptibility imaging at 7T: An evaluation in healthy subjects and patients with Huntington's disease

定量磁化率图 人工智能 模式识别(心理学) 医学 磁共振成像 计算机科学 放射科
作者
Jingwen Yao,Melanie A. Morrison,Angela Jakary,Sivakami Avadiappan,Yicheng Chen,Johanna Luitjens,Julia Glueck,Theresa Driscoll,Michael D. Geschwind,Alexandra Nelson,Javier Villanueva-Meyer,Christopher P. Hess,Janine M. Lupo
出处
期刊:NeuroImage [Elsevier BV]
卷期号:265: 119788-119788 被引量:7
标识
DOI:10.1016/j.neuroimage.2022.119788
摘要

Quantitative susceptibility mapping (QSM) is a promising tool for investigating iron dysregulation in neurodegenerative diseases, including Huntington's disease (HD). Many diverse methods have been proposed to generate accurate and robust QSM images. In this study, we evaluated the performance of different dipole inversion algorithms for iron-sensitive susceptibility imaging at 7T on healthy subjects of a large age range and patients with HD. We compared an iterative least-squares-based method (iLSQR), iterative methods that use regularization, single-step approaches, and deep learning-based techniques. Their performance was evaluated by comparing: (1) deviations from a multiple-orientation QSM reference; (2) visual appearance of QSM maps and the presence of artifacts; (3) susceptibility in subcortical brain regions with age; (4) regional brain susceptibility with published postmortem brain iron quantification; and (5) susceptibility in HD-affected basal ganglia regions between HD subjects and healthy controls. We found that single-step QSM methods with either total variation or total generalized variation constraints (SSTV/SSTGV) and the single-step deep learning method iQSM generally provided the best performance in terms of correlation with iron deposition and were better at differentiating between healthy controls and premanifest HD individuals, while deep learning QSM methods trained with multiple-orientation susceptibility data created QSM maps that were most similar to the multiple orientation reference and with the best visual scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssssxr完成签到,获得积分20
刚刚
秋qiu发布了新的文献求助10
1秒前
2秒前
聪明藏今完成签到,获得积分10
2秒前
2秒前
4秒前
yc发布了新的文献求助10
4秒前
阿Q完成签到,获得积分10
5秒前
坚定路人完成签到,获得积分10
7秒前
华仔应助咔敏采纳,获得10
7秒前
bull完成签到 ,获得积分10
8秒前
邢慧兰完成签到,获得积分10
8秒前
P33333发布了新的文献求助10
8秒前
yuhuai发布了新的文献求助10
9秒前
务实奎完成签到,获得积分10
11秒前
12秒前
minnom完成签到 ,获得积分10
14秒前
Likx完成签到,获得积分10
14秒前
阿斯巴甜完成签到,获得积分10
14秒前
pza1995完成签到,获得积分20
14秒前
16秒前
16秒前
xiaoxiaoliang完成签到,获得积分10
16秒前
秋qiu完成签到,获得积分10
16秒前
17秒前
科研通AI2S应助旷野采纳,获得10
17秒前
18秒前
19秒前
科研通AI5应助稳重秋寒采纳,获得10
19秒前
iNk发布了新的文献求助50
21秒前
21秒前
21秒前
21秒前
嗯哼大王发布了新的文献求助10
22秒前
绝不秃头完成签到,获得积分20
22秒前
函花花发布了新的文献求助10
23秒前
Oliver完成签到 ,获得积分10
23秒前
25秒前
顾矜应助小黎采纳,获得10
25秒前
cheng发布了新的文献求助10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794881
求助须知:如何正确求助?哪些是违规求助? 3339777
关于积分的说明 10297235
捐赠科研通 3056415
什么是DOI,文献DOI怎么找? 1676988
邀请新用户注册赠送积分活动 805034
科研通“疑难数据库(出版商)”最低求助积分说明 762286