Suppressed Internal Intrinsic Stress Engineering in High‐Performance Ni‐Rich Cathode Via Multilayered In Situ Coating Structure

材料科学 X射线光电子能谱 阴极 电解质 电化学 涂层 图层(电子) 复合材料 化学工程 电极 化学 工程类 物理化学
作者
Jiachao Yang,Yunjiao Li,Xiaoming Xi,Junchao Zheng,Jian Yu,Zhenjiang He
出处
期刊:Energy & environmental materials [Wiley]
卷期号:7 (2) 被引量:3
标识
DOI:10.1002/eem2.12574
摘要

LiNi x Co y Al z O 2 (NCA) cathode materials are drawing widespread attention, but the huge gap between the ideal and present cyclic stability still hinders their further commercial application, especially for the Ni‐rich LiNi x Co y Al z O 2 ( x > 0.8, x + y + z = 1) cathode material, which is owing to the structural degradation and particles' intrinsic fracture. To tackle the problems, Li 0.5 La 2 Al 0.5 O 4 in situ coated and Mn compensating doped multilayer LiNi 0.82 Co 0.14 Al 0.04 O 2 was prepared. XRD refinement indicates that La–Mn co‐modifying could realize appropriate Li/Ni disorder degree. Calculated results and in situ XRD patterns reveal that the LLAO coating layer could effectively restrain crack in secondary particles benefited from the suppressed internal strain. AFM further improves as NCA‐LM2 has superior mechanical property. The SEM, TEM, XPS tests indicate that the cycled cathode with LLAO–Mn modification displays a more complete morphology and less side reaction with electrolyte. DEMS was used to further investigate cathode–electrolyte interface which was reflected by gas evolution. NCA‐LM2 releases less CO 2 than NCA‐P indexing on a more stable surface. The modified material presents outstanding capacity retention of 96.2% after 100 cycles in the voltage range of 3.0–4.4 V at 1C, 13% higher than that of the pristine and 80.8% at 1 C after 300 cycles. This excellent electrochemical performance could be attributed to the fact that the high chemically stable coating layer of Li 0.5 La 2 Al 0.5 O 4 (LLAO) could enhance the interface and the Mn doping layer could suppress the influence of the lattice mismatch and distortion. We believe that it can be a useful strategy for the modification of Ni‐rich cathode material and other advanced functional material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明乐巧发布了新的文献求助10
刚刚
晓凡发布了新的文献求助10
1秒前
墨酒子完成签到,获得积分10
1秒前
yueyueyue发布了新的文献求助10
2秒前
手拿大炮发布了新的文献求助10
3秒前
ZIS发布了新的文献求助10
3秒前
一只椰青完成签到,获得积分10
3秒前
Accept应助科研通管家采纳,获得20
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
科研助手6应助科研通管家采纳,获得10
4秒前
hjmxb应助科研通管家采纳,获得10
4秒前
波比不菜应助科研通管家采纳,获得10
4秒前
4秒前
斯文明杰完成签到,获得积分10
4秒前
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
波比不菜应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
hbsand完成签到,获得积分10
5秒前
宓函完成签到,获得积分10
5秒前
Owen应助mmmi采纳,获得10
6秒前
罗明明完成签到 ,获得积分10
7秒前
lucky李完成签到,获得积分10
7秒前
小宝完成签到,获得积分20
7秒前
YellowStar完成签到,获得积分10
7秒前
7秒前
叫啥好呢完成签到,获得积分10
8秒前
JamesPei应助yahaha采纳,获得10
8秒前
小劳完成签到,获得积分10
9秒前
10秒前
123完成签到,获得积分10
10秒前
anan完成签到,获得积分10
10秒前
zhuzixuan发布了新的文献求助10
11秒前
553599712完成签到,获得积分10
12秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Elephant Welfare in Global Tourism 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
ACSM's guidelines for exercise testing and prescription, 12 ed 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3898352
求助须知:如何正确求助?哪些是违规求助? 3442584
关于积分的说明 10827053
捐赠科研通 3167391
什么是DOI,文献DOI怎么找? 1750003
邀请新用户注册赠送积分活动 845609
科研通“疑难数据库(出版商)”最低求助积分说明 788841