Earliest Possible Global and Local Interpretation of Students’ Performance in Virtual Learning Environment by Leveraging Explainable AI

计算机科学 口译(哲学) 人工智能 优势和劣势 辍学(神经网络) 机器学习 点选流向 教育数据挖掘 数据科学 万维网 互联网 哲学 认识论 Web API Web建模 程序设计语言
作者
Muhammad Adnan,M. Irfan Uddin,Emel Khan,Fahd S. Alharithi,Samina Amin,Ahmad A. Alzahrani
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 129843-129864 被引量:16
标识
DOI:10.1109/access.2022.3227072
摘要

In this research study, we propose an Explainable Artificial Intelligence (XAI) model that provides the earliest possible global and local interpretation of students' performance at various stages of course length. Global and local interpretation is provided in such a way that the prediction accuracy of a single local observation is close to the model's overall prediction accuracy. For the earliest possible understanding of student performance, local and global interpretation is provided at 20%, 40%, 60%, 80%, and 100% of course length. Machine Learning (ML) and Deep Learning (DL) which are subfields of Artificial Intelligence (AI) have recently emerged to assist all educational institution's in predicting the performance, engagement, and dropout rate of online students. Unfortunately, traditional ML and DL techniques lack in providing data analysis results in an understandable human way. Explainable AI (XAI), a new branch of AI, can be used in educational settings, specifically in VLEs, to provide the instructor with the study performance results of thousands or even millions of online students in a human-understandable way. Thus, unlike black box approaches such as traditional ML and DL techniques, XAI can help instructors to interpret the strengths and weaknesses of an individual student, providing them with timely personalized feedback and guidance. Various traditional and various ensemble ML algorithms were trained on demographic, clickstream, and assessment features to determine which algorithm gives the best performance result. The best-performing ML algorithm was ultimately selected and provided to the XAI model as an input for local and global interpretation of students' study behavior at various percentages of course length. We have used various XAI tools to give students' performance reports to instructors, in an explicable human way, at different stages of course length. The intermediate data analysis and performance reports will help instructors and all key stakeholders in decision-making and optimally facilitate online students.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
星子完成签到,获得积分10
1秒前
Wangchenghan完成签到,获得积分20
1秒前
一一完成签到,获得积分10
1秒前
Wangchenghan发布了新的文献求助10
3秒前
4秒前
杨zhen发布了新的文献求助10
4秒前
milk完成签到 ,获得积分10
7秒前
大模型应助yue采纳,获得10
8秒前
LLL完成签到 ,获得积分10
8秒前
可爱的函函应助LB采纳,获得10
9秒前
慕青应助Wangchenghan采纳,获得10
9秒前
黑米粥发布了新的文献求助10
14秒前
YZMING完成签到,获得积分10
15秒前
传奇3应助wubin69采纳,获得200
18秒前
TTT完成签到,获得积分10
22秒前
旺旺仙貝完成签到 ,获得积分10
24秒前
LB完成签到,获得积分10
28秒前
希望天下0贩的0应助一北采纳,获得10
33秒前
38秒前
40秒前
科研通AI5应助wubin69采纳,获得200
41秒前
烟花应助CYY采纳,获得10
43秒前
pluto完成签到,获得积分10
44秒前
44秒前
RR发布了新的文献求助10
44秒前
科研通AI5应助Nia采纳,获得30
45秒前
一北发布了新的文献求助10
45秒前
JamesPei应助iwhsgfes采纳,获得10
46秒前
46秒前
尔尔完成签到 ,获得积分10
47秒前
温婉的香水完成签到 ,获得积分10
49秒前
林xi完成签到 ,获得积分10
49秒前
木言发布了新的文献求助10
50秒前
51秒前
wanci应助从容谷菱采纳,获得10
52秒前
52秒前
52秒前
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780364
求助须知:如何正确求助?哪些是违规求助? 3325733
关于积分的说明 10224062
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669043
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649