Identification of BCL11A, NTN5, and OGN as Diagnosis Biomarker of Papillary Renal Cell Carcinomas by Bioinformatic Analysis

生物标志物 鉴定(生物学) 病理 医学 清除单元格 肾细胞癌 生物 遗传学 植物
作者
Zahra Haghshenas,Elham Nazari,Alireza Ahmadzadeh,Sina Fathi
出处
期刊:Journal of Kidney Cancer and VHL [Codon Publications]
卷期号:12 (1): 12-22
标识
DOI:10.15586/jkcvhl.v12i1.366
摘要

The prevalence of papillary renal cell carcinomas (PRCCs) is estimated to be between 10% and 15%. At present, there is no effective therapeutic approach available for patients with advanced PRCCs. The molecular biomarkers associated with PRCC diagnoses have been rarely studied compared to renal clear cell carcinomas; therefore, the necessity for the identification of novel molecular biomarkers to aid in the early identification of this disease. Bioinformatics and artificial intelligence technologies have become increasingly important in the search for diagnostic biomarkers for early cancer detection. In this study, three genes—BCL11A, NTN5, and OGN—were identified as diagnostic biomarkers using the Cancer Genome Atlas (TCGA) database and deep learning techniques. To identify the differential expression genes (DEGs), ribonucleic acid (RNA) expression profiles of PRCC patients were analyzed using a machine learning approach. A number of molecular pathways and coexpressions of DEGs have been analyzed and a correlation between DEGs and clinical data has been determined. Diagnostic markers were then determined via machine learning analysis. The 10 genes selected with the highest variable importance value (more than 0.9) were further investigated, with six upregulated (BCL11A, NTN5, SEL1L3, SKA3, TAPBP, SEMA6A) and four downregulated (OGN, ADCY4, SMOC2, CCL23). A combined receiver operating characteristic (ROC) curve analysis revealed that the BCL11A-NTN5-OGN genes, which have specificity and sensitivity values of 0.968 and 0.901, respectively, can be used as a diagnostic biomarker for PRCC. In general, the genes introduced in this study may be used as diagnostic biomarkers for the early diagnosis of PRCC, thus providing the possibility of early treatment and preventing the progression of the disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助indigo采纳,获得10
1秒前
Circle完成签到,获得积分10
2秒前
老奈发布了新的文献求助10
3秒前
丁丁丁完成签到,获得积分10
3秒前
6秒前
6秒前
6秒前
鸣蜩阿六完成签到,获得积分10
8秒前
9秒前
繁荣的忆文完成签到,获得积分10
10秒前
gwh发布了新的文献求助10
12秒前
13秒前
您好发布了新的文献求助30
14秒前
wakeeeeeee完成签到,获得积分10
15秒前
snail完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
清风发布了新的文献求助10
17秒前
拾石子完成签到 ,获得积分10
17秒前
吉吉完成签到 ,获得积分10
18秒前
yaoyaoyao发布了新的文献求助10
19秒前
lizhiqian2024发布了新的文献求助10
21秒前
bind完成签到,获得积分10
22秒前
22秒前
Andy发布了新的文献求助10
23秒前
清风完成签到,获得积分10
23秒前
24秒前
24秒前
jhb完成签到 ,获得积分10
25秒前
26秒前
28秒前
Georges-09发布了新的文献求助10
30秒前
070329发布了新的文献求助10
31秒前
秦子越发布了新的文献求助10
31秒前
无花果应助野猴子boom采纳,获得10
32秒前
高兴的小完成签到,获得积分10
32秒前
Dr彭0923完成签到,获得积分10
32秒前
白马非马完成签到,获得积分10
32秒前
lizhiqian2024发布了新的文献求助10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782959
求助须知:如何正确求助?哪些是违规求助? 3328287
关于积分的说明 10235585
捐赠科研通 3043430
什么是DOI,文献DOI怎么找? 1670491
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759050