缩放比例
可分离空间
网络拓扑
弹性(材料科学)
统计物理学
计算机科学
复杂网络
动力系统理论
人口
拓扑(电路)
代数数
非线性动力系统
摄动(天文学)
班级(哲学)
数学
理论计算机科学
非线性系统
物理
人工智能
社会学
数学分析
量子力学
操作系统
人口学
万维网
热力学
几何学
组合数学
作者
Lilei Han,Lang Zeng,Hayoung Choi,Ying–Cheng Lai,Younghae Do
出处
期刊:Chaos
[American Institute of Physics]
日期:2025-05-01
卷期号:35 (5)
摘要
In complex dynamical networks, the resilience of the individual nodes against perturbation and their influence on the network dynamics are of great interest and have been actively investigated. We consider situations where the coupling dynamics are separable, which arise in certain classes of dynamical processes including epidemic spreading, population dynamics, and regulatory processes, and derive the algebraic scaling relations characterizing the nodal resilience and influence. Utilizing synthetic and empirical networks of different topologies, we numerically verify the scaling associated with the dynamical processes. Our results provide insights into the interplay between network topology and dynamics for the class of processes with separable coupling functions.
科研通智能强力驱动
Strongly Powered by AbleSci AI