Abstract 7133: Detection of early stage colorectal cancer using cell-free oncRNA biomarkers and AI

结直肠癌 阶段(地层学) 医学 肿瘤科 癌症 内科学 生物 古生物学
作者
Amir Momen-Roknabadi,Mehran Karimzadeh,Nae-Chyun Chen,Taylor B. Cavazos,Jieyang Wang,Jeremy Ku,Alex Degtiar,Akshaya Krishnan,Martha Hernandez,Alice Huang,Selina Chen,Dang Le Tri Nguyen,Ti Lam,R. Hanna,Lisa Fish,Magdalena Gebala,Arabella Smith,Sandeep Sekhon,Jennifer Yen,Jeff P. Gregg
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:85 (8_Supplement_1): 7133-7133
标识
DOI:10.1158/1538-7445.am2025-7133
摘要

Abstract Background: Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. Early detection offers the best opportunity for effective treatment. Although CRC screening methods exist, there remains a need for a high performing blood test to both improve adherence and detect early stage disease. We have previously identified and developed a novel category of cancer-associated, small orphan non-coding RNAs (oncRNAs), and combined them with generative AI modeling to develop a liquid biopsy platform. This platform has demonstrated high sensitivity and specificity for detection of early stage disease across several types of cancer. In this study, we developed an oncRNA- and AI-based assay and analyzed it in a separate, independent test set to evaluate its generalizability and its ability to detect CRC across different cancer stages. Methods: We utilized The Cancer Genome Atlas (TCGA) small RNA profiles to discover a library of pan-cancer oncRNAs that were significantly enriched among tumors compared to adjacent normal tissues spanning multiple tissue sites. The diagnostic performance of these oncRNAs was evaluated in plasma using a training and independent test cohort. Our training cohort included 613 samples (388 CRC and 225 asymptomatic controls) from six different sources (mean age: 63.7 years, 35.9% female). 37.6% of the cases were classified as stage I/II and 60.8% as stage III/IV. Further, we acquired 192 samples (113 CRC and 79 asymptomatic controls) from a separate cohort for testing (average age: 62.6 years ; 51.6% female). In the test set, 52.2% of cases were classified as stage I/II and 47.8% as stage III/IV. We processed 1 ml of plasma for each sample through our universal, automated cell-free RNA workflow and sequenced at an average depth of 58 million 100-bp single-end reads. A generative AI model was trained using 5-fold cross-validation (CV) to predict CRC, and then applied on the separate, independent test set. Results: Our oncRNA-based generative AI model achieved an overall AUC of 0.93 (95% CI: 0.91-0.95) for prediction of CRC versus cancer-free controls in CV, and an overall AUC of 0.95 (0.93-0.98) in the independent test set. At 90% specificity, overall model sensitivity was 81.7% (77.5%-85.4%) by CV in the training data, and 88.5% (81.1%-93.7%) in the test set. For stage I CRC, the model has a sensitivity of 72.1% (59.9%-82.3%, N=68) by CV in the training data, and 80.0% (51.9%-95.7%, N=15) in the test set, both at 90% specificity. Conclusions: We demonstrate that blood-based cell- free RNA can be used for accurate and generalizable early stage detection of CRC. This approach, leveraging a distinct RNA biomarker, has the potential to overcome performance plateaus seen with conventional DNA-based methods in early-stage CRC detection. It offers a promising alternative for blood-based CRC screening in patients and could complement existing DNA- and methylation-based platforms. Citation Format: Amir Momen-Roknabadi, Mehran Karimzadeh, Nae-Chyun Chen, Taylor B. Cavazos, Jieyang Wang, Jeremy Ku, Alex Degtiar, Akshaya Krishnan, Martha Hernandez, Alice Huang, Selina Chen, Dang Nguyen, Ti Lam, Rose Hanna, Lisa Fish, Magdalena Gebala, Alexx J. Smith, Sukh Sekhon, Jennifer Yen, Jeff Gregg, Hani Goodarzi, Helen Li, Fereydoun Hormozdiari, Babak Behsaz, Anna Hartwig, Lee Schwartzberg, Babak Alipanahi. Detection of early stage colorectal cancer using cell-free oncRNA biomarkers and AI [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2025; Part 1 (Regular Abstracts); 2025 Apr 25-30; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2025;85(8_Suppl_1):Abstract nr 7133.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
pluto应助小城故事和冰雨采纳,获得10
2秒前
Reese发布了新的文献求助10
2秒前
爱吃年糕的朱完成签到,获得积分10
3秒前
4秒前
zaza完成签到 ,获得积分10
4秒前
宁幼萱发布了新的文献求助10
7秒前
7秒前
8秒前
小张医生发布了新的文献求助10
8秒前
8秒前
科研通AI5应助hyhyhyhy采纳,获得10
9秒前
Kenny发布了新的文献求助10
11秒前
CSwhy完成签到,获得积分10
14秒前
烟花应助abcd采纳,获得10
14秒前
科研通AI2S应助山谷采纳,获得10
15秒前
大虾发布了新的文献求助10
15秒前
16秒前
ybheart完成签到,获得积分10
17秒前
eltiempo完成签到 ,获得积分10
18秒前
18秒前
小张医生完成签到,获得积分20
21秒前
科研通AI2S应助哇咔咔采纳,获得10
21秒前
完美世界应助博修采纳,获得10
21秒前
课题分离发布了新的文献求助10
21秒前
22秒前
cdercder应助chengzi采纳,获得10
23秒前
23秒前
24秒前
Fiona发布了新的文献求助100
24秒前
追光者发布了新的文献求助10
24秒前
犹豫书雪发布了新的文献求助10
25秒前
粤利粤完成签到,获得积分10
25秒前
尉迟书兰完成签到 ,获得积分10
25秒前
26秒前
hyhyhyhy发布了新的文献求助10
27秒前
rui12完成签到,获得积分20
28秒前
29秒前
PHY发布了新的文献求助10
30秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840426
求助须知:如何正确求助?哪些是违规求助? 3382578
关于积分的说明 10524881
捐赠科研通 3102087
什么是DOI,文献DOI怎么找? 1708648
邀请新用户注册赠送积分活动 822618
科研通“疑难数据库(出版商)”最低求助积分说明 773428