Machine learning for improved medical device management: A focus on dialysis machines

Lasso(编程语言) 机器学习 透析 人工智能 逻辑回归 支持向量机 计算机科学 弹性网正则化 决策树 数据预处理 回归分析 特征选择 预测建模 回归 线性回归 数据挖掘 统计 医学 数学 外科 万维网
作者
Mato Martinović,Milena Kosović,Lemana Spahić,Adna Softić,Lejla Gurbeta Pokvić,Almir Badnjević
出处
期刊:Technology and Health Care [IOS Press]
标识
DOI:10.1177/09287329251328815
摘要

Background Dialysis is a very complex treatment that is received by around 3 million people annually. Around 10% of the death cases in the presence of the dialysis machine were due to the technical errors of dialysis devices. One of the ways to maintain dialysis devices is by using machine learning and predictive maintenance in order to reduce the risk of patient's death, costs of repairs and provide a higher quality treatment. Objective Prediction of dialysis machine performance status and errors using regression models. Method The methodology includes seven steps: data collection, processing, model selection, training, evaluation, fine-tuning, and prediction. After preprocessing 1034 measurements, twelve machine learning models were trained to predict dialysis machine performance, and temperature and conductivity error values. Results Each model was trained 100 times on different splits of the dataset (80% training, 10% testing, 10% evaluation). Logistic regression achieved the highest accuracy in predicting dialysis machine performance. For temperature predictions, Lasso regression had the lowest MSE on training data (0.0058), while Linear regression showed the highest R² (0.59). For conductivity predictions, Lasso regression provided the lowest MSE (0.134), with Decision tree achieving the highest R² (0.2036). SVM attained the lowest MSE on testing dataset, with 0.0055 for temperature and 0.1369 for conductivity. Conclusion The results of this study demonstrate that clinical engineering (CE) and health technology management (HTM) departments in healthcare institutions can benefit from proposed automated systems for advanced management of dialysis machines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含蓄听南完成签到 ,获得积分10
刚刚
1秒前
活泼蜡烛完成签到,获得积分10
2秒前
2秒前
lshao完成签到 ,获得积分10
5秒前
hhhhwl完成签到,获得积分10
5秒前
轻松叫兽完成签到,获得积分10
6秒前
alick完成签到,获得积分10
6秒前
lee完成签到 ,获得积分10
6秒前
小叶大王发布了新的文献求助10
7秒前
两颗西柚发布了新的文献求助10
7秒前
Catherine完成签到,获得积分20
9秒前
柯nb完成签到,获得积分10
9秒前
bubu发布了新的文献求助10
9秒前
打打应助科研通管家采纳,获得10
9秒前
ZOE应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
老阎应助科研通管家采纳,获得30
9秒前
科研通AI6应助科研通管家采纳,获得20
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
9秒前
Hello应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
小青椒应助科研通管家采纳,获得50
10秒前
161319141完成签到 ,获得积分10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
elitistwj完成签到,获得积分10
10秒前
10秒前
Tal完成签到,获得积分0
10秒前
龙眼完成签到,获得积分10
10秒前
11秒前
柯nb发布了新的文献求助10
13秒前
迅猛2002完成签到,获得积分10
13秒前
卡卡完成签到,获得积分10
13秒前
veronica完成签到,获得积分10
14秒前
慕青应助迅猛2002采纳,获得10
15秒前
欢喜可愁完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044838
求助须知:如何正确求助?哪些是违规求助? 4274315
关于积分的说明 13323674
捐赠科研通 4088088
什么是DOI,文献DOI怎么找? 2236731
邀请新用户注册赠送积分活动 1244114
关于科研通互助平台的介绍 1172128