亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

R predicting lung cancer bone metastasis using CT and pathological imaging with a Swin Transformer model

医学 肺癌 转移 病态的 骨转移 放射科 病理 癌症 内科学
作者
Wanling Li,Xinhua Zou,Jie Zhang,Man Hu,Guanfeng Chen,Shanshan Su
出处
期刊:Journal of bone oncology [Elsevier BV]
卷期号:52: 100681-100681
标识
DOI:10.1016/j.jbo.2025.100681
摘要

Bone metastasis is a common and serious complication in lung cancer patients, leading to severe pain, pathological fractures, and reduced quality of life. Early prediction of bone metastasis can enable timely interventions and improve patient outcomes. In this study, we developed a multimodal Swin Transformer-based deep learning model for predicting bone metastasis risk in lung cancer patients by integrating CT imaging and pathological data. A total of 215 patients with confirmed lung cancer diagnoses, including those with and without bone metastasis, were included. The model was designed to process high-resolution CT images and digitized histopathological images, with the features extracted independently by two Swin Transformer networks. These features were then fused using decision-level fusion techniques to improve classification accuracy. The Swin-Dual Fusion Model achieved superior performance compared to single-modality models and conventional architectures such as ResNet50, with an AUC of 0.966 on the test data and 0.967 on the training data. This integrated model demonstrated high accuracy, sensitivity, and specificity, making it a promising tool for clinical application in predicting bone metastasis risk. The study emphasizes the potential of transformer-based models to revolutionize bone oncology through advanced multimodal analysis and early prediction of metastasis, ultimately improving patient care and treatment outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
34秒前
Panther完成签到,获得积分10
47秒前
48秒前
发个15分的完成签到 ,获得积分10
49秒前
熊啊发布了新的文献求助10
53秒前
小二郎应助wawa采纳,获得10
1分钟前
黎aimomo完成签到,获得积分10
1分钟前
1分钟前
wawa发布了新的文献求助10
1分钟前
今后应助晓豪采纳,获得10
1分钟前
小蘑菇应助wawa采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
2分钟前
SDF完成签到,获得积分10
2分钟前
在水一方应助靓丽寄文采纳,获得30
2分钟前
2分钟前
翟翟发布了新的文献求助10
2分钟前
SDF发布了新的文献求助30
2分钟前
3分钟前
靓丽寄文发布了新的文献求助30
3分钟前
传奇3应助育种小杰采纳,获得10
3分钟前
3分钟前
靓丽寄文完成签到,获得积分10
4分钟前
顾矜应助科研通管家采纳,获得10
4分钟前
李爱国应助崔洪瑞采纳,获得10
4分钟前
5分钟前
育种小杰发布了新的文献求助10
5分钟前
bc应助megumin采纳,获得30
5分钟前
5分钟前
学术通zzz发布了新的文献求助10
5分钟前
5分钟前
球球球心完成签到,获得积分10
5分钟前
5分钟前
5分钟前
科研通AI5应助lx采纳,获得10
5分钟前
lhw发布了新的文献求助10
5分钟前
俭朴蜜蜂完成签到 ,获得积分10
6分钟前
彭于晏应助lhw采纳,获得10
6分钟前
星辰大海应助blueberry采纳,获得10
6分钟前
6分钟前
blueberry发布了新的文献求助10
6分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815803
求助须知:如何正确求助?哪些是违规求助? 3359333
关于积分的说明 10402190
捐赠科研通 3077174
什么是DOI,文献DOI怎么找? 1690218
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767713