RNAF: Regularization neural attenuation fields for sparse-view CBCT reconstruction

计算机科学 衰减 人工智能 神经编码 计算机视觉 迭代重建 压缩传感 正规化(语言学) 图像质量 图像(数学) 光学 物理
作者
Chunjie Xia,Tongjun Gu,Nan Zheng,Hongjiang Wei,Tsung‐Yuan Tsai
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
标识
DOI:10.1177/08953996241301661
摘要

Cone beam computed tomography (CBCT) is increasingly used in clinical settings, with the radiation dose incurred during X-ray acquisition emerging as a critical concern. Traditional algorithms for reconstructing high-quality CBCT images typically necessitate hundreds of X-ray projections, prompting a shift towards sparse-view CBCT reconstruction as a means to minimize radiation exposure. A novel approach, leveraging the Neural Attenuation Field (NAF) based on neural radiation field algorithms, has recently gained traction. This method offers rapid and promising CBCT reconstruction outcomes using a mere 50 views. Nonetheless, NAF tends to overlook the inherent structural properties of projected images, which can lead to shortcomings in accurately capturing the structural essence of the object being imaged. To address these limitations, we introduce an enhanced method: Regularization Neural Attenuation Fields (RNAF). Our approach includes two key innovations. First, we implement a hash coding regularization technique designed to retain low-frequency details within the reconstructed images, thereby preserving essential structural information. Second, we incorporate a Local Patch Global (LPG) sampling strategy. This method focuses on extracting local geometric details from the projection image, ensuring that the intensity variations in randomly sampled X-rays closely mimic those in the actual projection image. Comparative analyses across various body parts (Chest, Jaw, Foot, Abdomen, Knee) reveal that RNAF substantially outperforms existing algorithms. Specifically, its reconstruction quality exceeds that of previous NeRF-based, optimization-based, and analysis algorithms by margins of at least 2.09 dB, 3.09 dB, and 13.84 dB respectively. This significant enhancement in performance underscores the potential of RNAF as a groundbreaking solution in the realm of CBCT imaging, offering a path towards achieving high-quality reconstructions with reduced radiation exposure. Our implementation is publically available at https://github.com/springXIACJ/FRNAF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明的乔丹完成签到,获得积分20
2秒前
2秒前
和尚哥发布了新的文献求助10
2秒前
2秒前
2秒前
科研通AI2S应助冬青采纳,获得30
2秒前
Johnson完成签到 ,获得积分10
3秒前
LLL关注了科研通微信公众号
3秒前
王木木完成签到,获得积分10
3秒前
4秒前
成静完成签到 ,获得积分10
4秒前
5秒前
寒雪无忆曲江南完成签到,获得积分10
5秒前
kbkyvuy发布了新的文献求助10
5秒前
5秒前
上官若男应助ddd采纳,获得10
5秒前
方勇飞发布了新的文献求助10
6秒前
6秒前
乐观渊思完成签到,获得积分10
6秒前
zz完成签到,获得积分10
7秒前
上官若男应助我笑着童年采纳,获得10
7秒前
zxh完成签到,获得积分10
7秒前
天天快乐应助快乐的钢笔采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
wang完成签到 ,获得积分10
8秒前
烦烦完成签到,获得积分10
8秒前
我是老大应助sunxs采纳,获得10
8秒前
9秒前
alkaidt发布了新的文献求助10
9秒前
10秒前
包容诗槐发布了新的文献求助10
10秒前
10秒前
方勇飞完成签到,获得积分10
10秒前
留胡子的花生完成签到,获得积分10
10秒前
开开发布了新的文献求助10
10秒前
去码头整点薯条完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
基尼胎没发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490563
求助须知:如何正确求助?哪些是违规求助? 4589061
关于积分的说明 14423410
捐赠科研通 4521097
什么是DOI,文献DOI怎么找? 2477169
邀请新用户注册赠送积分活动 1462514
关于科研通互助平台的介绍 1435329