Enhancing Interstitial Lung Disease Diagnoses Through Multimodal AI Integration of Histopathological and CT Image Data

医学 医学诊断 病态的 放射科 寻常性间质性肺炎 放射性武器 一致性(知识库) 间质性肺病 人工智能 病理 计算机科学 内科学
作者
Kris Lami,Mutsumi Ozasa,X. Che,Wataru Uegami,Yoshihiro Kato,Yoshiaki Zaizen,Naoko Tsuyama,Ichiro Mori,Shin Ichihara,Han‐Seung Yoon,Ryoko Egashira,Kensuke Kataoka,Takeshi Johkoh,Yasuhiro Kondo,Richard Attanoos,Alberto Cavazza,Alberto M. Marchevsky,Frank Schneider,Jaroslaw Augustyniak,Amna Almutrafi
出处
期刊:Respirology [Wiley]
被引量:1
标识
DOI:10.1111/resp.70036
摘要

The diagnosis of interstitial lung diseases (ILDs) often relies on the integration of various clinical, radiological, and histopathological data. Achieving high diagnostic accuracy in ILDs, particularly for distinguishing usual interstitial pneumonia (UIP), is challenging and requires a multidisciplinary approach. Therefore, this study aimed to develop a multimodal artificial intelligence (AI) algorithm that combines computed tomography (CT) and histopathological images to improve the accuracy and consistency of UIP diagnosis. A dataset of CT and pathological images from 324 patients with ILD between 2009 and 2021 was collected. The CT component of the model was trained to identify 28 different radiological features. The pathological counterpart was developed in our previous study. A total of 114 samples were selected and used for testing the multimodal AI model. The performance of the multimodal AI was assessed through comparisons with expert pathologists and general pathologists. The developed multimodal AI demonstrated a substantial improvement in distinguishing UIP from non-UIP, achieving an AUC of 0.92. When applied by general pathologists, the diagnostic agreement rate improved significantly, with a post-model κ score of 0.737 compared to 0.273 pre-model integration. Additionally, the diagnostic consensus rate with expert pulmonary pathologists increased from κ scores of 0.278-0.53 to 0.474-0.602 post-model integration. The model also increased diagnostic confidence among general pathologists. Combining CT and histopathological images, the multimodal AI algorithm enhances pathologists' diagnostic accuracy, consistency, and confidence in identifying UIP, even in cases where specialised expertise is limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助aaa采纳,获得10
2秒前
Xielin完成签到,获得积分10
2秒前
3秒前
知性的雅彤完成签到,获得积分10
4秒前
5秒前
方继潘完成签到,获得积分10
6秒前
SKP给SKP的求助进行了留言
6秒前
可爱的函函应助大饼哥采纳,获得10
8秒前
酷波er应助Daisy采纳,获得10
10秒前
酆不二发布了新的文献求助30
11秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
Dyying应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
包元霜应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
包元霜应助科研通管家采纳,获得10
13秒前
似乎一场梦完成签到,获得积分10
14秒前
22474发布了新的文献求助10
16秒前
16秒前
18秒前
上官若男应助清爽太阳采纳,获得10
21秒前
23秒前
酆不二完成签到,获得积分10
24秒前
24秒前
Daisy发布了新的文献求助10
24秒前
gyh完成签到,获得积分20
25秒前
25秒前
lkl完成签到,获得积分10
26秒前
二呆完成签到,获得积分10
26秒前
KONGX完成签到,获得积分20
27秒前
水木年华完成签到,获得积分10
28秒前
vvA11发布了新的文献求助10
28秒前
全追命发布了新的文献求助10
29秒前
许许完成签到,获得积分20
30秒前
31秒前
KONGX发布了新的文献求助10
31秒前
大个应助ChenYifei采纳,获得10
36秒前
111发布了新的文献求助10
38秒前
友好的笑柳完成签到,获得积分10
39秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4148343
求助须知:如何正确求助?哪些是违规求助? 3684802
关于积分的说明 11642343
捐赠科研通 3378618
什么是DOI,文献DOI怎么找? 1854141
邀请新用户注册赠送积分活动 916513
科研通“疑难数据库(出版商)”最低求助积分说明 830361