Wireless power transfer (WPT) systems are critical for enabling safe and efficient charging of inspection drones in flammable oilfield environments, yet existing solutions struggle with multi-target compatibility and reactive power losses. This study proposes a novel frequency-regulated LCC-S topology that achieves both constant current (CC) and constant voltage (CV) charging modes for heterogeneous drones using a single hardware configuration. By dynamically adjusting the operating frequency, the system minimizes the input impedance angle (θ < 10°) while maintaining load-independent CC and CV outputs, thereby reducing reactive power by 92% and ensuring spark-free operation in explosive atmospheres. Experimental validation with two distinct oilfield inspection drones demonstrates seamless mode transitions, zero-phase-angle (ZPA) resonance, and peak efficiencies of 92.57% and 91.12%, respectively. The universal design eliminates the need for complex alignment mechanisms, offering a scalable solution for multi-drone fleets in energy, agriculture, and disaster response applications.