The d‐band energy level splitting of ferric group (Fe, Co, Ni) metals drives the adsorption‐conversion of polysulfides

分离器(采油) 吸附 阳极 化学工程 过渡金属 碳纳米管 氧化还原 催化作用 材料科学 化学 无机化学 纳米技术 电极 物理化学 有机化学 热力学 物理 工程类
作者
Tong Li,Yajie Sun,Kaixiang Shi,Weilun Qin,Hangyi Chen,Junhao Li,Yuying Zheng,Quanbing Liu,Zhenxing Liang
出处
期刊:Aiche Journal [Wiley]
卷期号:70 (3) 被引量:18
标识
DOI:10.1002/aic.18327
摘要

Abstract The notorious lithium polysulfides (LiPSs) shuttle effect, which results in low capacity, subpar rate performance, and quick capacity deterioration, has severely restricted the practical applications of lithium sulfur (Li‐S) batteries. Therefore, it is very important for modified materials to promote thermodynamics and redox kinetics in the entrapping‐conversion process of polysulfides. Density functional theory (DFT) calculations show that ferric group (Fe, Co, Ni) transition metals not only provide moderate binding contacts with LiPSs but also act as an active catalyst in the spontaneous and sequential lithiation of S 8 to Li 2 S by d‐band energy level splitting, and quick migration of Li ions can be operated on their surface, enhancing the utilization of LiPSs. Experimentally, felicitously‐fabricated ferric group (Fe, Co, Ni) transition metals encapsulated in nitrogen‐doped carbon nanotubes (M@NCNT) electrocatalysts were introduced into Li‐S batteries via separator functionalization. Actually, the experiments demonstrated that the excellent shuttle effect hindering was enabled. Consistent with theoretical predictions, Li‐S batteries with Ni@NCNT modified separators had significantly improved rate capacity and cycling stability. The cells with Ni@NCNT were able to achieve a high initial discharge capacity of 1035 mAh g −1 and a capacity retention rate of 70% at 500 discharges at 1.0 C with a 0.060% capacity decay each cycle, performing considerable cycle‐life with state‐of‐the‐art separators. Our work demonstrated a realistic separator‐modified strategy of d‐band energy level splitting from ferric group metals for high‐performance and long‐life Li‐S batteries, further propelling Li‐S battery commercialization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dawn发布了新的文献求助10
1秒前
1秒前
chenlin完成签到,获得积分10
1秒前
自由的松完成签到,获得积分10
1秒前
1秒前
光亮的莺完成签到,获得积分10
1秒前
甜甜映波完成签到,获得积分20
2秒前
Lucas应助Lily采纳,获得10
2秒前
2秒前
WXY发布了新的文献求助10
3秒前
天天快乐应助刘超D采纳,获得150
3秒前
3秒前
3秒前
寒月悲笳发布了新的文献求助10
4秒前
4秒前
Jasper应助嘿嘿嘿侦探社采纳,获得10
4秒前
光亮的莺发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
6秒前
甜甜映波发布了新的文献求助10
7秒前
星辰大海应助无心采纳,获得10
7秒前
7秒前
7秒前
科研通AI6应助chenlin采纳,获得30
8秒前
小马甲应助nihao采纳,获得10
8秒前
8秒前
hyjcnhyj发布了新的文献求助10
8秒前
许垲锋发布了新的文献求助10
8秒前
小二郎应助luyue9406采纳,获得10
9秒前
9秒前
10秒前
干净的翠琴完成签到,获得积分10
10秒前
10秒前
赘婿应助乐茵采纳,获得10
10秒前
11秒前
11秒前
初七123发布了新的文献求助10
11秒前
科研蛀虫发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194106
求助须知:如何正确求助?哪些是违规求助? 4376448
关于积分的说明 13629417
捐赠科研通 4231351
什么是DOI,文献DOI怎么找? 2320965
邀请新用户注册赠送积分活动 1319192
关于科研通互助平台的介绍 1269564