Recognition of Depression from Video Frames by using Convolutional Neural Networks

计算机科学 卷积神经网络 人工智能 心情 联营 深度学习 特征(语言学) 面部表情 模式识别(心理学) 心理学 语言学 哲学 精神科
作者
Jianwen WANG,Xiao Sha
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:14 (11)
标识
DOI:10.14569/ijacsa.2023.01411116
摘要

The disturbances of the mood are relevant to the emotions. Specifically, the behaviour of persons with disturbances of mood, like the depression of the unipolar, displays a powerful correlation of the temporal by the emotional girths of the arousal and the valence. Moreover, the psychiatrists and the psychologists take into account the audible signs of the facial and the audible signs of the voice when they assess the condition of the patient. Depression makes audible behaviours like weak expressions, the validation of the contact of the eye and the use of little flat-voiced sentences. Artificial intelligence has combined various automated frameworks for the detection of depression severity by using hand-crafted features. The method of deep learning has been successfully applied to detect depression. In the current article, a federate architecture, which is the network of the neural of the deep convolutional basis on the attention of global, is proposed to diagnose the depression. This method uses CNN with the attention mechanism and also uses the integration of the weighted spatial pyramid pooling for the learning of the deep global representation. In this method, two branches are introduced: the CNN based on local attention focuses on the patches of the local, while the CNN based on global attention attains the universal patterns from the whole face area. For taking the data of the supplementary among two parts, a CNN basis on the local-global attention is proposed. The designed experiments have been done in two datasets, which are AVEC2014 and AVEC2013. The results show that our presented approach can extract the depression patterns from the video frames. Also, the outcomes display that our presented approach is superior to the best methods based on the video for the detection of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Vicky发布了新的文献求助10
3秒前
橘子发布了新的文献求助10
4秒前
4秒前
西瓜发布了新的文献求助10
5秒前
了凡发布了新的文献求助10
5秒前
wkwkkwk发布了新的文献求助10
6秒前
6秒前
6秒前
科目三应助十三采纳,获得10
7秒前
8秒前
杪春完成签到 ,获得积分10
8秒前
8秒前
李健的粉丝团团长应助sdl采纳,获得10
10秒前
zhenya完成签到,获得积分10
11秒前
论高等数学的无用性完成签到 ,获得积分10
11秒前
卡拉蹦蹦发布了新的文献求助10
11秒前
LVMIN完成签到,获得积分20
11秒前
12秒前
ZSJ发布了新的文献求助10
12秒前
KouZL完成签到,获得积分10
12秒前
wkwkkwk完成签到,获得积分10
14秒前
童童完成签到,获得积分10
15秒前
15秒前
15秒前
mxd发布了新的文献求助10
16秒前
lyejxusgh完成签到,获得积分10
16秒前
小二郎应助了凡采纳,获得10
17秒前
kai发布了新的文献求助10
18秒前
19秒前
今天只做一件事应助西瓜采纳,获得10
19秒前
科研通AI5应助西瓜采纳,获得10
19秒前
欢呼的飞荷完成签到 ,获得积分10
23秒前
sdl发布了新的文献求助10
24秒前
27秒前
fossette发布了新的文献求助10
27秒前
杜11完成签到,获得积分10
29秒前
彼岸完成签到,获得积分10
29秒前
大腚疯猪应助cun采纳,获得20
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796537
求助须知:如何正确求助?哪些是违规求助? 3341751
关于积分的说明 10307672
捐赠科研通 3058381
什么是DOI,文献DOI怎么找? 1678151
邀请新用户注册赠送积分活动 805906
科研通“疑难数据库(出版商)”最低求助积分说明 762838