Robust Real-time Audio-Visual Speech Enhancement based on DNN and GAN

计算机科学 语音增强 语音识别 可理解性(哲学) 平均意见得分 深层神经网络 语音处理 积极倾听 人工神经网络 人工智能 语音活动检测 噪音(视频) 背景噪声 噪声测量 稳健性(进化) 任务分析 质量(理念) 生成语法 言语感知 隐马尔可夫模型
作者
Mandar Gogate,Kia Dashtipour,Amir Hussain
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:11
标识
DOI:10.1109/tai.2024.3366141
摘要

The human auditory cortex contextually integrates audio-visual (AV) cues to better understand speech in a cocktail party situation. Recent studies have shown that AV speech enhancement (SE) models can significantly improve speech quality and intelligibility in low signal-to-noise ratios ( SNR < −5dB ) environments compared to audio-only (A-only) SE models. However, despite substantial research in the area of AV SE, development of real-time processing models that can generalise across various types of visual and acoustic noises remains a formidable technical challenge. This paper introduces a novel framework for low-latency, speaker-independent AV SE. The proposed framework is designed to generalise to visual and acoustic noises encountered in real world settings. In particular, a generative adversarial network (GAN) is proposed to address the issue of visual speech noise including poor lighting in real noisy environments. In addition, a novel real-time AV SE based on a deep neural network is proposed. The model leverages the enhanced visual speech from the GAN to deliver robust SE. The effectiveness of the proposed framework is evaluated on synthetic AV datasets using objective speech quality and intelligibility metrics. Furthermore, subjective listening tests are conducted using real noisy AV corpora. The results demonstrate that the proposed real-time AV SE framework improves the mean opinion score by 20% as compared to state-of-the-art SE approaches including recent DNN based AV SE models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
0610发布了新的文献求助10
刚刚
魏头头完成签到 ,获得积分10
1秒前
Lucas应助勤奋的听枫采纳,获得10
1秒前
斯文败类应助缓慢弼采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
勤奋尔冬完成签到 ,获得积分10
3秒前
linjunqi完成签到,获得积分10
3秒前
3秒前
科研通AI6应助123321采纳,获得10
3秒前
4秒前
wanci应助义气的灯泡采纳,获得10
4秒前
4秒前
4秒前
优雅枫叶完成签到 ,获得积分20
4秒前
4秒前
小林完成签到 ,获得积分10
5秒前
5秒前
红豆发布了新的文献求助10
5秒前
5秒前
wish发布了新的文献求助10
6秒前
6秒前
科研通AI6应助认真的寒香采纳,获得10
6秒前
无限凝芙发布了新的文献求助10
7秒前
石子发布了新的文献求助10
7秒前
JamesPei应助zhang采纳,获得10
8秒前
小曹开摆了发布了新的文献求助150
8秒前
9秒前
9秒前
tejing1158发布了新的文献求助10
9秒前
9秒前
linghanlan完成签到,获得积分10
10秒前
Lny应助牧羊人采纳,获得30
10秒前
Zshen完成签到 ,获得积分10
11秒前
bkagyin应助羞涩的丹云采纳,获得10
11秒前
11秒前
叁金完成签到,获得积分10
12秒前
12秒前
星星发布了新的文献求助10
12秒前
CodeCraft应助wanglan采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662339
求助须知:如何正确求助?哪些是违规求助? 4841915
关于积分的说明 15099227
捐赠科研通 4820774
什么是DOI,文献DOI怎么找? 2580225
邀请新用户注册赠送积分活动 1534281
关于科研通互助平台的介绍 1492959