Overcoming Diverse Undesired Effects in Recommender Systems: A Deontological Approach

计算机科学 推荐系统 数据科学 人工智能 机器学习
作者
Paula Gómez Duran,Pere Gilabert,Santi Seguí,Jordi Vitrià
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
被引量:1
标识
DOI:10.1145/3643857
摘要

In today’s digital landscape, recommender systems have gained ubiquity as a means of directing users towards personalized products, services, and content. However, despite their widespread adoption and a long track of research, these systems are not immune to shortcomings. A significant challenge faced by recommender systems is the presence of biases, which produces various undesirable effects, prominently the popularity bias. This bias hampers the diversity of recommended items, thus restricting users’ exposure to less popular or niche content. Furthermore, this issue is compounded when multiple stakeholders are considered, requiring the balance of multiple, potentially conflicting objectives. In this paper, we present a new approach to address a wide range of undesired consequences in recommender systems that involve various stakeholders. Instead of adopting a consequentialist perspective that aims to mitigate the repercussions of a recommendation policy, we propose a deontological approach centered around a minimal set of ethical principles. More precisely, we introduce two distinct principles aimed at avoiding overconfidence in predictions and accurately modeling the genuine interests of users. The proposed approach circumvents the need for defining a multi-objective system, which has been identified as one of the main limitations when developing complex recommenders. Through extensive experimentation, we show the efficacy of our approach in mitigating the adverse impact of the recommender from both user and item perspectives, ultimately enhancing various beyond accuracy metrics. This study underscores the significance of responsible and equitable recommendations and proposes a strategy that can be easily deployed in real-world scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
企鹅发布了新的文献求助20
3秒前
英勇语山发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
moon123完成签到,获得积分10
5秒前
csr发布了新的文献求助10
6秒前
7秒前
小马甲应助贪玩菲音采纳,获得10
8秒前
9秒前
超炫酷的发布了新的文献求助10
11秒前
隐形曼青应助俏皮的一德采纳,获得10
13秒前
丰富黄豆发布了新的文献求助10
14秒前
科研通AI5应助付佟秋烟采纳,获得10
17秒前
17秒前
皮皮发布了新的文献求助20
17秒前
企鹅完成签到,获得积分10
18秒前
超炫酷的完成签到,获得积分20
18秒前
20秒前
21秒前
搜集达人应助2134165采纳,获得10
24秒前
量子星尘发布了新的文献求助10
24秒前
丰富黄豆完成签到,获得积分20
25秒前
25秒前
材料若饥完成签到,获得积分10
25秒前
28秒前
新手菜鸟发布了新的文献求助10
30秒前
30秒前
田様应助科研通管家采纳,获得10
32秒前
diaoyulao完成签到,获得积分10
32秒前
32秒前
酷波er应助科研通管家采纳,获得10
33秒前
核桃应助科研通管家采纳,获得10
33秒前
ding应助科研通管家采纳,获得10
33秒前
司徒文青应助科研通管家采纳,获得30
33秒前
JamesPei应助科研通管家采纳,获得10
33秒前
34秒前
35秒前
科研通AI6应助我爱科研采纳,获得10
35秒前
35秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4247446
求助须知:如何正确求助?哪些是违规求助? 3780479
关于积分的说明 11869480
捐赠科研通 3433774
什么是DOI,文献DOI怎么找? 1884585
邀请新用户注册赠送积分活动 936205
科研通“疑难数据库(出版商)”最低求助积分说明 842130