清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Patch-Based Convolutional Encoder: A Deep Learning Algorithm for Spectral Classification Balancing the Local and Global Information

人工智能 模式识别(心理学) 深度学习 步伐 计算机科学 自编码 卷积神经网络 化学 物理 天文
作者
Xinyu Lu,Chen-Yue Wang,Hui Tang,Yifei Qin,Cui Li,Xiang Wang,Guokun Liu,Bin Ren
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:2
标识
DOI:10.1021/acs.analchem.3c03889
摘要

Molecular vibrational spectroscopies, including infrared absorption and Raman scattering, provide molecular fingerprint information and are powerful tools for qualitative and quantitative analysis. They benefit from the recent development of deep-learning-based algorithms to improve the spectral, spatial, and temporal resolutions. Although a variety of deep-learning-based algorithms, including those to simultaneously extract the global and local spectral features, have been developed for spectral classification, the classification accuracy is still far from satisfactory when the difference becomes very subtle. Here, we developed a lightweight algorithm named patch-based convolutional encoder (PACE), which effectively improved the accuracy of spectral classification by extracting spectral features while balancing local and global information. The local information was captured well by segmenting the spectrum into patches with an appropriate patch size. The global information was extracted by constructing the correlation between different patches with depthwise separable convolutions. In the five open-source spectral data sets, PACE achieved a state-of-the-art performance. The more difficult the classification, the better the performance of PACE, compared with that of residual neural network (ResNet), vision transformer (ViT), and other commonly used deep learning algorithms. PACE helped improve the accuracy to 92.1% in Raman identification of pathogen-derived extracellular vesicles at different physiological states, which is much better than those of ResNet (85.1%) and ViT (86.0%). In general, the precise recognition and extraction of subtle differences offered by PACE are expected to facilitate vibrational spectroscopy to be a powerful tool toward revealing the relevant chemical reaction mechanisms in surface science or realizing the early diagnosis in life science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrCuiTianjin完成签到 ,获得积分10
7秒前
凤里完成签到 ,获得积分10
9秒前
Alex-Song完成签到 ,获得积分0
27秒前
taoxz521完成签到 ,获得积分10
29秒前
CUN完成签到,获得积分10
34秒前
ys1008完成签到,获得积分10
35秒前
文献蚂蚁完成签到,获得积分10
35秒前
Drizzle完成签到,获得积分10
35秒前
洋芋饭饭完成签到,获得积分10
35秒前
Skywings完成签到,获得积分10
38秒前
杉杉完成签到 ,获得积分10
39秒前
曾经不言完成签到 ,获得积分10
46秒前
tkbxa完成签到 ,获得积分10
50秒前
狼来了aas完成签到,获得积分10
1分钟前
开朗白开水完成签到 ,获得积分10
1分钟前
高兴的问儿完成签到 ,获得积分10
1分钟前
back you up应助科研通管家采纳,获得80
1分钟前
1分钟前
积极的乐瑶完成签到 ,获得积分10
1分钟前
依然灬聆听完成签到,获得积分10
2分钟前
积极废物完成签到 ,获得积分10
2分钟前
2分钟前
标致惋庭发布了新的文献求助10
2分钟前
Faye完成签到 ,获得积分10
2分钟前
Eid完成签到,获得积分10
2分钟前
2分钟前
自然幼翠发布了新的文献求助10
2分钟前
标致惋庭完成签到,获得积分20
3分钟前
不再挨训完成签到 ,获得积分10
3分钟前
悠悠完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
FL完成签到,获得积分10
3分钟前
4分钟前
十一发布了新的文献求助10
4分钟前
渡己完成签到 ,获得积分10
4分钟前
fogsea完成签到,获得积分0
4分钟前
理穆辛完成签到 ,获得积分10
4分钟前
十一完成签到 ,获得积分10
5分钟前
宇文雨文完成签到 ,获得积分10
5分钟前
xiaosui完成签到 ,获得积分10
5分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800957
求助须知:如何正确求助?哪些是违规求助? 3346489
关于积分的说明 10329490
捐赠科研通 3063031
什么是DOI,文献DOI怎么找? 1681330
邀请新用户注册赠送积分活动 807474
科研通“疑难数据库(出版商)”最低求助积分说明 763714