Enhancing the lubricity and wear resistance of shape-memory-polymer via titanium carbide-based MAX and MXene

润滑性 材料科学 摩擦学 复合材料 碳化钛 干润滑剂 拉曼光谱 磨料 形状记忆合金 碳化物 光学 物理
作者
Shubham Jaiswal,Jeet Vishwakarma,Shubham Bhatt,Reuben J. Yeo,Rahul Mishra,Chetna Dhand,Neeraj Dwivedi
出处
期刊:Carbon [Elsevier BV]
卷期号:219: 118790-118790 被引量:8
标识
DOI:10.1016/j.carbon.2024.118790
摘要

Sliding surfaces not only consume an exceptional amount of energy to overcome friction but also cause premature failure of mechanical systems due to wear, leading them to be frequently replaced. Friction and wear are, therefore, major concerns from the viewpoints of energy consumption, cost, and the environment. Here we report for the first time the development of tribologically resilient and self-healing smart composites comprising shape-memory polyurethane (SMPU) as the model polymer matrix and titanium carbide-based MAX and MXene materials as fillers. The ball-on-disk tribological tests and 3D optical surface profilometry tests are performed to examine the coefficient of friction and wear. The introduction of layered MAX and MXene phase materials exceptionally reduces the friction of SMPU by 2–3 times and reduces its wear rate by 2–3 orders of magnitude, even at low filler concentrations of 0.25 wt%. In-depth wear track analysis, using Raman spectroscopy and EDAX elemental mapping, reveals the presence of MAX and MXene at the wear track, in addition to tribochemically formed TiO2, which contributes to the SMPU's lubricity and wear resistance. Furthermore, the developed materials reveal damage healing capability, which is not hindered by the reinforcement of MAX and MXene as well. The results suggest that by using these composites, not only the friction and wear but also the frequent replacement of sliding components can be minimized, which is crucial for cost-saving and environmentally sustainable technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助MTF采纳,获得10
3秒前
科研通AI2S应助萨芬撒采纳,获得10
4秒前
6秒前
8秒前
思绪摸摸头完成签到 ,获得积分10
9秒前
小蘑菇应助逃亡的小狗采纳,获得10
9秒前
大力的宝川完成签到 ,获得积分10
11秒前
不如看海发布了新的文献求助10
12秒前
杨白秋完成签到,获得积分10
12秒前
田様应助1212431采纳,获得10
16秒前
18秒前
19秒前
伶俐念珍完成签到 ,获得积分10
20秒前
22秒前
激昂的飞松完成签到,获得积分20
22秒前
27秒前
29秒前
Lucas应助直率的花生采纳,获得10
32秒前
萨芬撒发布了新的文献求助10
32秒前
飞快的尔芙完成签到,获得积分10
33秒前
36秒前
白契完成签到 ,获得积分0
37秒前
共享精神应助ardoroso采纳,获得10
37秒前
41秒前
QAQ完成签到,获得积分10
42秒前
43秒前
樊大有完成签到 ,获得积分10
45秒前
47秒前
49秒前
冷傲中道发布了新的文献求助10
52秒前
Raymond发布了新的文献求助10
55秒前
伶俐问薇完成签到,获得积分10
55秒前
syrrr要发文章完成签到 ,获得积分10
57秒前
Typing完成签到,获得积分20
1分钟前
1分钟前
惠小之完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助和气生财君采纳,获得10
1分钟前
1分钟前
靓丽的熠彤完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778731
求助须知:如何正确求助?哪些是违规求助? 3324277
关于积分的说明 10217710
捐赠科研通 3039405
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798531
科研通“疑难数据库(出版商)”最低求助积分说明 758401