Prediction of Drug-Target Interactions with High-Quality Negative Samples and A Network-Based Deep Learning Framework

计算机科学 二部图 人工智能 机器学习 人工神经网络 异构网络 图形 鉴定(生物学) 交互信息 数据挖掘 理论计算机科学 生物 无线 数学 无线网络 统计 电信 植物
作者
Zhixing Cheng,Deling Xu,Dewu Ding,Yanrui Ding
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:3
标识
DOI:10.1109/jbhi.2024.3354953
摘要

Identification of drug-target interactions (DTIs) plays a crucial role in drug discovery. Compared to traditional experimental methods, computer-based methods for predicting DTIs can significantly reduce the time and financial burdens of drug development. In recent years, numerous machine learning-based methods have been proposed for predicting potential DTIs. However, a common limitation among these methods is the absence of high-quality negative samples. Moreover, the effective extraction of multisource information of drugs and proteins for DTI prediction remains a significant challenge. In this paper, we investigated two aspects: the selection of high-quality negative samples and the construction of a high-performance DTI prediction framework. Specifically, we found two types of hidden biases when randomly selecting negative samples from unlabeled drug-protein pairs and proposed a negative sample selection approach based on complex network theory. Furthermore, we proposed a novel DTI prediction method named HNetPa-DTI, which integrates topological information from the drug-protein-disease heterogeneous network and gene ontology (GO) and pathway annotation information of proteins. Specifically, we extracted topological information of the drug-protein-disease heterogeneous network using heterogeneous graph neural networks, and obtained GO and pathway annotation information of proteins from the GO term semantic similarity networks, GO term-protein bipartite networks, and pathway-protein bipartite network using graph neural networks. Experimental results show that HNetPa-DTI outperforms the baseline methods on four types of prediction tasks, demonstrating the superiority of our method. Our code and datasets are available at https://github.com/study-czx/HNetPa-DTI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张煜发布了新的文献求助10
1秒前
2秒前
3301完成签到,获得积分20
2秒前
小敏完成签到,获得积分10
3秒前
粗心的悒发布了新的文献求助10
3秒前
4秒前
4秒前
科研助手6应助舒适路人采纳,获得10
4秒前
脑洞疼应助Lontano采纳,获得10
4秒前
4秒前
liberty发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
7秒前
完美世界应助Slyvia2025采纳,获得30
7秒前
缓慢钢笔发布了新的文献求助10
8秒前
开朗醉波发布了新的文献求助10
8秒前
充电宝应助Rjy采纳,获得10
9秒前
拜师学艺完成签到,获得积分10
9秒前
9秒前
今后应助青瑜采纳,获得10
10秒前
10秒前
h'c'z发布了新的文献求助10
11秒前
丘比特应助Victoria采纳,获得10
11秒前
shbkmy发布了新的文献求助30
12秒前
12秒前
木木发布了新的文献求助10
12秒前
14秒前
14秒前
14秒前
木头发布了新的文献求助30
15秒前
yue完成签到,获得积分10
15秒前
15秒前
科研通AI5应助zzz采纳,获得10
16秒前
低风险不升级完成签到,获得积分10
16秒前
科研助手6应助舒适路人采纳,获得10
16秒前
16秒前
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786651
求助须知:如何正确求助?哪些是违规求助? 3332319
关于积分的说明 10255052
捐赠科研通 3047657
什么是DOI,文献DOI怎么找? 1672658
邀请新用户注册赠送积分活动 801463
科研通“疑难数据库(出版商)”最低求助积分说明 760204