INTERPRETABLE MACHINE LEARNING FOR PREDICTING RISK OF INVASIVE FUNGAL INFECTION IN CRITICALLY ILL PATIENTS IN THE INTENSIVE CARE UNIT: A RETROSPECTIVE COHORT STUDY BASED ON MIMIC-IV DATABASE

病危 重症监护室 重症监护医学 医学 队列 回顾性队列研究 重症监护 队列研究 急诊医学 内科学
作者
Yuan Cao,Yun Li,Min Wang,Lu Wang,Yuan Fang,Yiqi Wu,Yuyan Liu,Yixuan Liu,Ziqian Hao,Hengbo Gao,Hongjun Kang
出处
期刊:Shock [Ovid Technologies (Wolters Kluwer)]
卷期号:61 (6): 817-827 被引量:4
标识
DOI:10.1097/shk.0000000000002312
摘要

ABSTRACT The delayed diagnosis of invasive fungal infection (IFI) is highly correlated with poor prognosis in patients. Early identification of high-risk patients with invasive fungal infections and timely implementation of targeted measures is beneficial for patients. The objective of this study was to develop a machine learning-based predictive model for invasive fungal infection in patients during their intensive care unit (ICU) stay. Retrospective data was extracted from adult patients in the MIMIC-IV database who spent a minimum of 48 h in the ICU. Feature selection was performed using LASSO regression, and the dataset was balanced using the BL-SMOTE approach. Predictive models were built using six machine learning algorithms. The Shapley additive explanation algorithm was used to assess the impact of various clinical features in the optimal model, enhancing interpretability. The study included 26,346 ICU patients, of whom 379 (1.44%) were diagnosed with invasive fungal infection. The predictive model was developed using 20 risk factors, and the dataset was balanced using the borderline-SMOTE (BL-SMOTE) algorithm. The BL-SMOTE random forest model demonstrated the highest predictive performance (area under curve = 0.88, 95% CI = 0.84–0.91). Shapley additive explanation analysis revealed that the three most influential clinical features in the BL-SMOTE random forest model were dialysis treatment, APSIII scores, and liver disease. The machine learning model provides a reliable tool for predicting the occurrence of IFI in ICU patients. The BL-SMOTE random forest model, based on 20 risk factors, exhibited superior predictive performance and can assist clinicians in early assessment of IFI occurrence in ICU patients. Importance: Invasive fungal infections are characterized by high incidence and high mortality rates characteristics. In this study, we developed a clinical prediction model for invasive fungal infections in critically ill patients based on machine learning algorithms. The results show that the machine learning model based on 20 clinical features has good predictive value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
little发布了新的文献求助10
2秒前
JamesPei应助JS采纳,获得10
2秒前
2秒前
3秒前
科研通AI6应助朝闻道采纳,获得10
3秒前
脑洞疼应助songhan采纳,获得10
4秒前
4秒前
5秒前
郢都小镇发布了新的文献求助30
6秒前
6秒前
8秒前
6a完成签到 ,获得积分10
8秒前
8秒前
vvei完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
10秒前
wowowww发布了新的文献求助10
11秒前
称心山柏发布了新的文献求助10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
wr08281完成签到,获得积分10
13秒前
田様应助科研通管家采纳,获得10
13秒前
Criminology34应助科研通管家采纳,获得10
13秒前
晚安发布了新的文献求助10
13秒前
FashionBoy应助qingxuan采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
14秒前
浮游应助科研通管家采纳,获得10
14秒前
wxyshare应助科研通管家采纳,获得10
14秒前
14秒前
大模型应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344456
求助须知:如何正确求助?哪些是违规求助? 4479697
关于积分的说明 13944205
捐赠科研通 4376849
什么是DOI,文献DOI怎么找? 2404949
邀请新用户注册赠送积分活动 1397495
关于科研通互助平台的介绍 1369791