已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interpretable machine learning for predicting risk of invasive fungal infection in critically ill patients in the intensive care unit: A retrospective cohort study based on MIMIC-IV database

病危 重症监护室 重症监护医学 医学 队列 回顾性队列研究 重症监护 队列研究 急诊医学 内科学
作者
Yuan Cao,Yun Li,Min Wang,Lu Wang,Yuan Fang,Yiqi Wu,Yuyan Liu,Yixuan Liu,Ziqian Hao,Hengbo Gao,Hongjun Kang
出处
期刊:Shock [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1097/shk.0000000000002312
摘要

The delayed diagnosis of invasive fungal infection (IFI) is highly correlated with poor prognosis in patients. Early identification of high-risk patients with invasive fungal infections and timely implementation of targeted measures is beneficial for patients. The objective of this study was to develop a machine learning-based predictive model for invasive fungal infection in patients during their intensive care unit (ICU) stay. Retrospective data was extracted from adult patients in the MIMIC-IV database who spent a minimum of 48 h in the ICU. Feature selection was performed using LASSO regression, and the dataset was balanced using the BL-SMOTE approach. Predictive models were built using six machine learning algorithms. The Shapley additive explanation algorithm was used to assess the impact of various clinical features in the optimal model, enhancing interpretability. The study included 26,346 ICU patients, of whom 379 (1.44%) were diagnosed with invasive fungal infection. The predictive model was developed using 20 risk factors, and the dataset was balanced using the borderline-SMOTE (BL-SMOTE) algorithm. The BL-SMOTE random forest model demonstrated the highest predictive performance (area under curve = 0.88, 95% CI = 0.84-0.91). Shapley additive explanation analysis revealed that the three most influential clinical features in the BL-SMOTE random forest model were dialysis treatment, APSIII scores, and liver disease. The machine learning model provides a reliable tool for predicting the occurrence of IFI in ICU patients. The BL-SMOTE random forest model, based on 20 risk factors, exhibited superior predictive performance and can assist clinicians in early assessment of IFI occurrence in ICU patients. Importance: Invasive fungal infections are characterized by high incidence and high mortality rates characteristics. In this study, we developed a clinical prediction model for invasive fungal infections in critically ill patients based on machine learning algorithms. The results show that the machine learning model based on 20 clinical features has good predictive value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
治好了也得淌口水完成签到,获得积分10
2秒前
5秒前
Skyrin完成签到,获得积分0
6秒前
陶醉的连虎关注了科研通微信公众号
9秒前
华仔应助二十二点36采纳,获得30
9秒前
FashionBoy应助鹿阿布采纳,获得10
9秒前
Gesj应助xgx984采纳,获得10
13秒前
机灵的忆梅完成签到 ,获得积分10
14秒前
14秒前
大方从彤完成签到,获得积分10
15秒前
香风智乃完成签到 ,获得积分10
17秒前
18秒前
小小发布了新的文献求助10
19秒前
21秒前
顾矜应助林钰浩采纳,获得10
22秒前
23秒前
鹿阿布发布了新的文献求助10
23秒前
一夜之秋完成签到,获得积分10
23秒前
tzy完成签到,获得积分10
24秒前
端庄书萱发布了新的文献求助10
26秒前
28秒前
机智迎天完成签到,获得积分10
28秒前
万能图书馆应助兴奋采梦采纳,获得10
30秒前
31秒前
研友_LjDyNZ发布了新的文献求助10
34秒前
上官若男应助含糊的盼易采纳,获得10
34秒前
Voyage完成签到 ,获得积分20
39秒前
上官若男应助江xiaoyu小鱼采纳,获得10
45秒前
动漫大师发布了新的文献求助10
46秒前
46秒前
脑洞疼应助李大帅采纳,获得10
48秒前
50秒前
在水一方应助科研通管家采纳,获得10
51秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
51秒前
星辰大海应助科研通管家采纳,获得10
51秒前
foxdaopo发布了新的文献求助30
51秒前
丘比特应助科研通管家采纳,获得10
51秒前
情怀应助科研通管家采纳,获得10
52秒前
深情安青应助科研通管家采纳,获得10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782447
求助须知:如何正确求助?哪些是违规求助? 3327907
关于积分的说明 10233668
捐赠科研通 3042869
什么是DOI,文献DOI怎么找? 1670242
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758904