Development and verification of real‐time hybrid simulation with deep learning‐based nonlinear numerical substructure

下部结构 非线性系统 计算机科学 结构工程 人工智能 地质学 工程类 物理 量子力学
作者
Pei‐Ching Chen,Shang‐Chi Hsu,Chung‐Chun Ma
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:53 (6): 2141-2161
标识
DOI:10.1002/eqe.4107
摘要

Abstract Real‐time hybrid simulation (RTHS) provides an effective approach for assessing structural responses under dynamic excitation. However, performing RTHS with a complex nonlinear numerical substructure is challenging, as computations must be completed within predefined time steps. In this study, a RTHS framework which contains a rate‐dependent experimental substructure and a nonlinear numerical substructure has been proposed and verified. An OpenSees model was constructed to simulate a three‐story, one‐bay steel building with viscous dampers at each floor and was used to generate the training dataset through a large number of nonlinear time‐history analyses. A Recursive Long Short–Term Memory (LSTM) neural network model was trained to predict the nonlinear structural responses using ground acceleration and time‐delayed damper force located at the first story. Hence, the Recursive‐LSTM model served as a surrogate model for the numerical substructure, implicitly incorporating delay compensation for the experimental substructure. After the training was completed, offline testing was performed to realize the stability of the RTHS framework. Then, online RTHS with a virtual damper taken as the experimental substructure was conducted to further confirm the feasibility and accuracy. Afterwards, a nonlinear rotary fluid viscous damper (RFVD) was fabricated as the actual experimental substructure, whose dynamic response was not considered in training the Recursive‐LSTM model. Finally, RTHS with the RFVD was completed successfully and stably, demonstrating the capability of a well‐trained Recursive‐LSTM model to serve as a nonlinear numerical substructure incorporating constant delay compensation for RTHS. The potential of the proposed RTHS framework is worth further studies in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酱子发布了新的文献求助10
1秒前
shee完成签到 ,获得积分10
2秒前
lulu发布了新的文献求助10
2秒前
完美世界应助危机采纳,获得10
3秒前
4秒前
无花果应助Kahanto采纳,获得10
5秒前
zhanlang发布了新的文献求助10
6秒前
靓丽访枫完成签到 ,获得积分10
6秒前
6秒前
7秒前
lxlcx应助胡健采纳,获得20
7秒前
11秒前
11秒前
11秒前
11秒前
rui发布了新的文献求助10
12秒前
田様应助shine采纳,获得10
12秒前
12秒前
12秒前
小超超完成签到 ,获得积分10
13秒前
陈静怡发布了新的文献求助10
14秒前
15秒前
Li发布了新的文献求助10
16秒前
JamesPei应助SKZ采纳,获得10
16秒前
16秒前
Kahanto发布了新的文献求助10
16秒前
绝尘完成签到,获得积分10
16秒前
TMUEH_FCL发布了新的文献求助10
17秒前
绝尘发布了新的文献求助10
19秒前
19秒前
Lucas应助满眼星辰采纳,获得10
21秒前
卡布叻发布了新的文献求助10
23秒前
23秒前
情怀应助Zq采纳,获得10
24秒前
阿九完成签到,获得积分10
24秒前
25秒前
itsdatou完成签到,获得积分10
25秒前
隐形曼青应助wqx采纳,获得10
26秒前
TuDou完成签到,获得积分10
27秒前
沐雪发布了新的文献求助10
29秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Oxford Handbook of Video Game Music and Sound 200
TM 5-855-1(Fundamentals of protective design for conventional weapons) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826255
求助须知:如何正确求助?哪些是违规求助? 3368692
关于积分的说明 10451719
捐赠科研通 3088023
什么是DOI,文献DOI怎么找? 1698917
邀请新用户注册赠送积分活动 817222
科研通“疑难数据库(出版商)”最低求助积分说明 770100