Efficient Seismic Data Denoising via Deep Learning With Improved MCA-SCUNet

计算机科学 降噪 噪音(视频) 人工智能 深度学习 卷积神经网络 模式识别(心理学) 高斯噪声 算法 图像(数学)
作者
Jinxin Chen,Guoxin Chen,Jun Li,R. Du,Yuli Qi,Chun‐Feng Li,Naijian Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:10
标识
DOI:10.1109/tgrs.2024.3355972
摘要

In hydrocarbon exploration, seismic data collected in the field inevitably encounters noise interference, which subsequently affects the data processing and interpretation. Recently, deep learning methods have gained widespread popularity in seismic denoising. Among these methods, the U-Net has shown some potential, but its performance in complex noise suppression needs further improvement due to the limitations of the U-Net structure. Moreover, the majority of existing noise suppression methods primarily focus on synthetic noises with single characteristics, such as Gaussian random noise and linear interference. To devise methods that can effectively suppress more intricate field noise, this paper proposes a novel noise suppression method based on an encoder-decoder architecture called Multiscale Channel Attention Swin Conv UNet. Notably, it enhances the U-Net through the integration of the following two modules: (1) Swin-Conv Block, which replaces the convolution operation of U-Net and integrates the non-local modeling ability of Swin Transformer and the local modeling ability of residual connection convolution layers to achieve multi-dimensional feature extraction; (2) Multiscale Channel Attention Block, which replaces skip connection modules between the encoder and decoder in the U-Net with multi-channel feature fusion to capture more complex channel dependencies. This paper evaluates the proposed algorithm on both synthetic and field seismic data, and compares the results with several established denoising methods. Our algorithm enhances the network's noise perception capabilities and improves signal-to-noise ratio and structural similarity index measure of seismic data. Finally, a concise discussion on the limitations of our method and potential avenues for enhancement is provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
8秒前
10秒前
11秒前
共享精神应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
冰魂应助科研通管家采纳,获得10
13秒前
FelixChen应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得30
13秒前
13秒前
Shion发布了新的文献求助10
14秒前
sci完成签到 ,获得积分10
15秒前
执着的日记本完成签到,获得积分10
16秒前
zhzssaijj完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
pluto应助estrella采纳,获得50
20秒前
zy3637完成签到 ,获得积分10
21秒前
21秒前
雷高炜发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
小何又学累了完成签到 ,获得积分10
27秒前
27秒前
28秒前
平常的毛豆应助modesty采纳,获得10
28秒前
31秒前
漫溢阳光完成签到 ,获得积分10
31秒前
32秒前
33秒前
鑫鑫完成签到,获得积分10
34秒前
雾失楼台发布了新的文献求助30
36秒前
Jojin完成签到,获得积分10
37秒前
37秒前
烟花应助starry采纳,获得10
38秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865193
求助须知:如何正确求助?哪些是违规求助? 3407463
关于积分的说明 10654630
捐赠科研通 3131554
什么是DOI,文献DOI怎么找? 1727175
邀请新用户注册赠送积分活动 832169
科研通“疑难数据库(出版商)”最低求助积分说明 780175