GFSPP-YOLO: A Light YOLO Model Based on Group Fast Spatial Pyramid Pooling

联营 棱锥(几何) 计算机科学 帕斯卡(单位) 目标检测 卷积(计算机科学) 移动设备 人工智能 深度学习 骨干网 分布式计算 实时计算 计算机视觉 模式识别(心理学) 计算机网络 人工神经网络 物理 光学 程序设计语言 操作系统
作者
Shaojie Xu,Yujiao Ji,Guangcheng Wang,Lei Jin,Han Wang
标识
DOI:10.1109/icicn59530.2023.10393445
摘要

The YOLO object detection model for PC environments is widely used in computer vision due to its high accuracy and good real-time performance. However, when faced with the embedded environment of mobile devices, the use of YOLO models in mobile devices is still challenging due to the large computational requirements and memory consumption. To address these issues, this paper proposes a lightweight YOLO model based on grouped fast spatial pyramidal pooling. Different from the existing YOLOv5 model, firstly, at the end of the backbone network, the receptive field is expanded using the ideas of CSPNet and group convolution to build a group fast spatial pyramidal pooling structure GFSPP to avoid false and missed detections caused by image distortion; and a CBAM attention mechanism is introduced in the backbone network to improve the characterization of network features. Secondly, the slim neck paradigm combined with the lightweight convolutional module GhostConv is used in the neck network to compress the network structure. Finally, migration learning techniques are used to further improve the detection performance of the model. Experimental results show that the GFSPP-YOLO model proposed in this paper reduces the complexity and parameter costs by 10% and 3.5% respectively compared to the traditional YOLOv5s model on the PASCAL VOC2007+12 dataset, while the mAP0.5 is improved by 2%, making the model in this paper more suitable for applications in embedded environments of mobile terminals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lyanph发布了新的文献求助10
刚刚
震动的千萍完成签到,获得积分10
1秒前
科研通AI5应助hello采纳,获得10
1秒前
yong发布了新的文献求助15
1秒前
仰望发布了新的文献求助10
1秒前
1秒前
2秒前
yanyan完成签到,获得积分10
2秒前
SYLH应助封小封采纳,获得10
2秒前
奋斗雨雪完成签到,获得积分10
3秒前
拼搏菠萝完成签到,获得积分10
4秒前
4秒前
111完成签到,获得积分10
5秒前
sally_5202完成签到,获得积分10
5秒前
5秒前
5秒前
完美世界应助哈哈哈采纳,获得10
5秒前
天天快乐应助三叶草采纳,获得10
5秒前
龙霸天发布了新的文献求助10
5秒前
鱼儿发布了新的文献求助10
6秒前
6秒前
6秒前
不安的斑马完成签到,获得积分10
6秒前
6秒前
长安发布了新的文献求助10
6秒前
善学以致用应助Frim采纳,获得10
7秒前
方明会发布了新的文献求助10
7秒前
8秒前
拜了个拜完成签到,获得积分20
8秒前
8秒前
8秒前
9秒前
andy发布了新的文献求助10
9秒前
Cheney3完成签到,获得积分10
10秒前
郭一只发布了新的文献求助10
10秒前
锈了的xuebxuebi雪碧完成签到,获得积分10
10秒前
顾矜应助炙热晓露采纳,获得10
10秒前
wxy发布了新的文献求助10
10秒前
zmj完成签到,获得积分10
11秒前
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806200
求助须知:如何正确求助?哪些是违规求助? 3350995
关于积分的说明 10352451
捐赠科研通 3066890
什么是DOI,文献DOI怎么找? 1684167
邀请新用户注册赠送积分活动 809367
科研通“疑难数据库(出版商)”最低求助积分说明 765487