Graspability-Aware Object Pose Estimation in Cluttered Scenes

姿势 人工智能 计算机科学 计算机视觉 抓住 机器人 稳健性(进化) 三维姿态估计 对象(语法) 可达性 特征(语言学) 机器人学 生物化学 化学 语言学 哲学 理论计算机科学 基因 程序设计语言
作者
Dinh-Cuong Hoang,Anh-Nhat Nguyen,Van-Duc Vu,Thu-Uyen Nguyen,Duy-Quang Vu,Phuc-Quan Ngo,Ngoc-Anh Hoang,Khanh-Toan Phan,Duc-Thanh Tran,Van-Thiep Nguyen,Quang-Tri Duong,Ngoc-Trung Ho,Cong-Trinh Tran,Van-Hiep Duong,Anh-Truong Mai
出处
期刊:IEEE robotics and automation letters 卷期号:9 (4): 3124-3130 被引量:18
标识
DOI:10.1109/lra.2024.3364451
摘要

Object recognition and pose estimation are critical components in autonomous robot manipulation systems, playing a crucial role in enabling robots to interact effectively with the environment. During actual execution, the robot must recognize the object in the current scene, estimate its pose, and then select a feasible grasp pose from the pre-defined grasp configurations. While most existing methods primarily focus on pose estimation, they often neglect the graspability and reachability aspects. This oversight can lead to inefficiencies and failures during execution. In this study, we introduce an innovative graspability-aware object pose estimation framework. Our proposed approach not only estimates the poses of multiple objects in clustered scenes but also identifies graspable areas. This enables the system to concentrate its efforts on specific points or regions of an object that are suitable for grasping. It leverages both depth and color images to extract geometric and appearance features. To effectively combine these diverse features, we have developed an adaptive fusion module. In addition, the fused features are further enhanced through a graspability-aware feature enhancement module. The key innovation of our method lies in improving the discriminability and robustness of the features used for object pose estimation. We have achieved state-of-the-art results on public datasets when compared to several baseline methods. In real robot experiments conducted on a Franka Emika robot arm equipped with an Intel Realsense camera and a two-finger gripper, we consistently achieved high success rates, even in cluttered scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助球魁采纳,获得10
1秒前
心平气和发布了新的文献求助20
1秒前
1秒前
2秒前
领导范儿应助neversay4ever采纳,获得10
2秒前
NexusExplorer应助lwy采纳,获得10
2秒前
3秒前
科研阳发布了新的文献求助10
3秒前
Twonej应助这瓜不卖采纳,获得30
4秒前
4秒前
niNe3YUE应助这瓜不卖采纳,获得10
4秒前
4秒前
淡定草丛发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
lqlq发布了新的文献求助10
6秒前
丘比特应助arale采纳,获得10
6秒前
满意花生完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
毛子涵发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
123发布了新的文献求助10
9秒前
9秒前
minever白完成签到,获得积分10
9秒前
咔咔发布了新的文献求助10
9秒前
11秒前
11秒前
张培霖关注了科研通微信公众号
12秒前
CipherSage应助空白采纳,获得10
12秒前
QKOOKIE发布了新的文献求助10
12秒前
布丁仔发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711378
求助须知:如何正确求助?哪些是违规求助? 5203436
关于积分的说明 15264067
捐赠科研通 4863675
什么是DOI,文献DOI怎么找? 2610868
邀请新用户注册赠送积分活动 1561184
关于科研通互助平台的介绍 1518621