Deep learning-based clinical-radiomics nomogram for preoperative prediction of lymph node metastasis in patients with rectal cancer: a two-center study

列线图 医学 接收机工作特性 放射科 结直肠癌 百分位 逻辑回归 无线电技术 豪斯多夫距离 阶段(地层学) 癌症 人工智能 肿瘤科 内科学 计算机科学 统计 数学 古生物学 生物
作者
Shiyu Ma,Haidi Lu,Guodong Jing,Zhihui Li,Qianwen Zhang,Xiaolu Ma,Fangying Chen,Chengwei Shao,Yong Lu,Hao Wang,Fu Shen
出处
期刊:Frontiers in Medicine [Frontiers Media]
卷期号:10 被引量:14
标识
DOI:10.3389/fmed.2023.1276672
摘要

Precise preoperative evaluation of lymph node metastasis (LNM) is crucial for ensuring effective treatment for rectal cancer (RC). This research aims to develop a clinical-radiomics nomogram based on deep learning techniques, preoperative magnetic resonance imaging (MRI) and clinical characteristics, enabling the accurate prediction of LNM in RC.Between January 2017 and May 2023, a total of 519 rectal cancer cases confirmed by pathological examination were retrospectively recruited from two tertiary hospitals. A total of 253 consecutive individuals were selected from Center I to create an automated MRI segmentation technique utilizing deep learning algorithms. The performance of the model was evaluated using the dice similarity coefficient (DSC), the 95th percentile Hausdorff distance (HD95), and the average surface distance (ASD). Subsequently, two external validation cohorts were established: one comprising 178 patients from center I (EVC1) and another consisting of 88 patients from center II (EVC2). The automatic segmentation provided radiomics features, which were then used to create a Radscore. A predictive nomogram integrating the Radscore and clinical parameters was constructed using multivariate logistic regression. Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were employed to evaluate the discrimination capabilities of the Radscore, nomogram, and subjective evaluation model, respectively.The mean DSC, HD95 and ASD were 0.857 ± 0.041, 2.186 ± 0.956, and 0.562 ± 0.194 mm, respectively. The nomogram, which incorporates MR T-stage, CEA, CA19-9, and Radscore, exhibited a higher area under the ROC curve (AUC) compared to the Radscore and subjective evaluation in the training set (0.921 vs. 0.903 vs. 0.662). Similarly, in both external validation sets, the nomogram demonstrated a higher AUC than the Radscore and subjective evaluation (0.908 vs. 0.735 vs. 0.640, and 0.884 vs. 0.802 vs. 0.734).The application of the deep learning method enables efficient automatic segmentation. The clinical-radiomics nomogram, utilizing preoperative MRI and automatic segmentation, proves to be an accurate method for assessing LNM in RC. This approach has the potential to enhance clinical decision-making and improve patient care.Research registry, identifier 9158, https://www.researchregistry.com/browse-the-registry#home/registrationdetails/648e813efffa4e0028022796/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
汉堡包应助科研通管家采纳,获得10
2秒前
2秒前
田国兵发布了新的文献求助10
2秒前
辣酒猫应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
N7发布了新的文献求助10
4秒前
一念通则万达完成签到 ,获得积分20
4秒前
jqmiao发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
寄偶发布了新的文献求助30
6秒前
7秒前
7秒前
轨迹发布了新的文献求助10
7秒前
哆啦的空间站应助路宝采纳,获得10
7秒前
科研小白完成签到 ,获得积分10
7秒前
TCAcycle发布了新的文献求助30
8秒前
9秒前
哆啦的空间站给自然的凝冬的求助进行了留言
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5002851
求助须知:如何正确求助?哪些是违规求助? 4247693
关于积分的说明 13233983
捐赠科研通 4046698
什么是DOI,文献DOI怎么找? 2213861
邀请新用户注册赠送积分活动 1223835
关于科研通互助平台的介绍 1144196