Deep learning-based clinical-radiomics nomogram for preoperative prediction of lymph node metastasis in patients with rectal cancer: a two-center study

列线图 医学 接收机工作特性 放射科 结直肠癌 百分位 逻辑回归 无线电技术 豪斯多夫距离 阶段(地层学) 癌症 人工智能 肿瘤科 内科学 计算机科学 统计 数学 古生物学 生物
作者
Salam Ma,Haidi Lu,Guodong Jing,Zhihui Li,Qianwen Zhang,Xiaolu Ma,Fangying Chen,Chengwei Shao,Yong Lu,Hao Wang,Shoukuan Fu
出处
期刊:Frontiers in Medicine [Frontiers Media]
卷期号:10 被引量:4
标识
DOI:10.3389/fmed.2023.1276672
摘要

Precise preoperative evaluation of lymph node metastasis (LNM) is crucial for ensuring effective treatment for rectal cancer (RC). This research aims to develop a clinical-radiomics nomogram based on deep learning techniques, preoperative magnetic resonance imaging (MRI) and clinical characteristics, enabling the accurate prediction of LNM in RC.Between January 2017 and May 2023, a total of 519 rectal cancer cases confirmed by pathological examination were retrospectively recruited from two tertiary hospitals. A total of 253 consecutive individuals were selected from Center I to create an automated MRI segmentation technique utilizing deep learning algorithms. The performance of the model was evaluated using the dice similarity coefficient (DSC), the 95th percentile Hausdorff distance (HD95), and the average surface distance (ASD). Subsequently, two external validation cohorts were established: one comprising 178 patients from center I (EVC1) and another consisting of 88 patients from center II (EVC2). The automatic segmentation provided radiomics features, which were then used to create a Radscore. A predictive nomogram integrating the Radscore and clinical parameters was constructed using multivariate logistic regression. Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were employed to evaluate the discrimination capabilities of the Radscore, nomogram, and subjective evaluation model, respectively.The mean DSC, HD95 and ASD were 0.857 ± 0.041, 2.186 ± 0.956, and 0.562 ± 0.194 mm, respectively. The nomogram, which incorporates MR T-stage, CEA, CA19-9, and Radscore, exhibited a higher area under the ROC curve (AUC) compared to the Radscore and subjective evaluation in the training set (0.921 vs. 0.903 vs. 0.662). Similarly, in both external validation sets, the nomogram demonstrated a higher AUC than the Radscore and subjective evaluation (0.908 vs. 0.735 vs. 0.640, and 0.884 vs. 0.802 vs. 0.734).The application of the deep learning method enables efficient automatic segmentation. The clinical-radiomics nomogram, utilizing preoperative MRI and automatic segmentation, proves to be an accurate method for assessing LNM in RC. This approach has the potential to enhance clinical decision-making and improve patient care.Research registry, identifier 9158, https://www.researchregistry.com/browse-the-registry#home/registrationdetails/648e813efffa4e0028022796/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
G1234发布了新的文献求助10
1秒前
Doctor完成签到,获得积分10
1秒前
米贝明z发布了新的文献求助10
1秒前
wyw完成签到,获得积分10
1秒前
李金纹发布了新的文献求助10
2秒前
抽屉里的砖头完成签到,获得积分10
2秒前
cc发布了新的文献求助10
2秒前
Hello应助卡萨卡萨采纳,获得10
3秒前
4秒前
5秒前
英姑应助的呀呀采纳,获得10
6秒前
现实的日记本完成签到,获得积分10
6秒前
安静复天发布了新的文献求助10
7秒前
Dog应助jyyg采纳,获得10
7秒前
木子完成签到,获得积分10
7秒前
8秒前
柔弱藏今发布了新的文献求助10
8秒前
共享精神应助跳跃曼文采纳,获得10
8秒前
Xujiamin完成签到,获得积分10
8秒前
木子完成签到,获得积分10
9秒前
9秒前
乐观小之应助nanbei采纳,获得10
10秒前
果果发布了新的文献求助10
10秒前
10秒前
10秒前
123发布了新的文献求助10
10秒前
张文静发布了新的文献求助10
11秒前
星沉静默发布了新的文献求助10
12秒前
WW完成签到,获得积分10
12秒前
12秒前
yydragen发布了新的文献求助30
13秒前
Jiang发布了新的文献求助10
13秒前
范旭东完成签到,获得积分20
14秒前
憨憨完成签到,获得积分10
14秒前
Ava应助感动代荷采纳,获得10
14秒前
14秒前
活力的映易完成签到,获得积分10
15秒前
16秒前
CF完成签到 ,获得积分10
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3947415
求助须知:如何正确求助?哪些是违规求助? 3492574
关于积分的说明 11065941
捐赠科研通 3223475
什么是DOI,文献DOI怎么找? 1781512
邀请新用户注册赠送积分活动 866356
科研通“疑难数据库(出版商)”最低求助积分说明 800299