DMF-Net: A Dual-Encoding Multi-Scale Fusion Network for Pavement Crack Detection

计算机科学 卷积神经网络 人工智能 分割 特征学习 深度学习 编码(内存) 变压器 特征(语言学) 特征提取 模式识别(心理学) 工程类 电压 语言学 电气工程 哲学
作者
Suli Bai,Lei Yang,Yanhong Liu,Hongnian Yu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 5981-5996 被引量:10
标识
DOI:10.1109/tits.2023.3331769
摘要

Currently, cracks are the most common defect in pavement diseases. Long-term non-maintenance can lead to crack lengthening and expansion, causing serious traffic accidents, as well as shortening the service life of pavement cracks. Therefore, it is of utmost importance to maintain cracks at an early stage. Due to the effect of some challenging factors, such as various shape information of the cracks, complex textured backgrounds, light shadows, similar texture objects, micro cracks and other factors, accurate crack detection still faces a certain challenges. To solve the above problems, a dual-encoding multi-scale fusion network based on the combination of convolutional neural network (CNN) and transformer network is proposed, named DMF-Net. To obtain stronger feature representations, a dual-encoding path is built to acquire global context features and local detail information simultaneously, where global context features are extracted based on the transformer branch, and the local detail features are extracted based on the CNN branch to detect tiny details of the cracks. Meanwhile, an interactive attention learning (IAL) module is introduced to effectively fuse the global features from the transformer branch and the local detail information from the CNN branch, achieving mutual communication and learning of different feature information. In addition, to enrich the feature representation ability, an attention-based feature enhancement (AFE) module is introduced to acquire more global contexts. Furthermore, faced with the crack detection task with class imbalance issue, a triple attention module (TAM) is built to emphasize the micro cracks. Finally, in the segmentation prediction stage, the deep supervision mechanism is also introduced to accelerate the convergence speed of the model, and serve effective multi-scale feature fusion. Compared with the current mainstream segmentation models, excellent performance has been obtained, which could provide a feasible scheme for the early maintenance of pavement cracks. The source code about proposed DMF-Net is available at https://github.com/Bsl1/DMFNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助璇er采纳,获得10
1秒前
tianya完成签到,获得积分10
1秒前
在水一方应助Ai_niyou采纳,获得10
5秒前
wawaaaah完成签到 ,获得积分10
7秒前
nicolaslcq完成签到,获得积分10
8秒前
爆米花应助刘123采纳,获得10
9秒前
LL完成签到 ,获得积分10
10秒前
11秒前
一夜之秋完成签到,获得积分10
11秒前
19秒前
chessman完成签到,获得积分10
23秒前
刘123发布了新的文献求助10
23秒前
安静的诗翠完成签到,获得积分10
30秒前
31秒前
科研通AI5应助单纯的雅香采纳,获得10
34秒前
SciGPT应助qianyuan采纳,获得10
35秒前
chiweiyoung完成签到,获得积分10
36秒前
37秒前
美满的稚晴完成签到 ,获得积分10
40秒前
41秒前
瘦瘦的迎南完成签到 ,获得积分10
42秒前
zhang完成签到,获得积分10
46秒前
46秒前
tdtk发布了新的文献求助10
47秒前
47秒前
梦幻两点半完成签到,获得积分20
48秒前
50秒前
51秒前
qianyuan发布了新的文献求助10
51秒前
tsing发布了新的文献求助30
55秒前
56秒前
57秒前
58秒前
小金骑士发布了新的文献求助10
1分钟前
1分钟前
酷炫依白发布了新的文献求助10
1分钟前
LZM完成签到,获得积分10
1分钟前
1分钟前
Joaquin完成签到 ,获得积分10
1分钟前
liang发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323664
关于积分的说明 10215332
捐赠科研通 3038846
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339