Improved 3D point cloud segmentation for accurate phenotypic analysis of cabbage plants using deep learning and clustering algorithms

点云 分割 聚类分析 计算机科学 人工智能 数据库扫描 交叉口(航空) 算法 模式识别(心理学) 数据挖掘 模糊聚类 地理 地图学 CURE数据聚类算法
作者
Ruichao Guo,Jilong Xie,Jiaxi Zhu,Ruifeng Cheng,Yi Zhang,Xihai Zhang,Xinjing Gong,Ruwen Zhang,Hao Wang,Fanfeng Meng
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:211: 108014-108014 被引量:45
标识
DOI:10.1016/j.compag.2023.108014
摘要

Plant phenotyping is essential for understanding and managing plant growth and development. 3D point clouds provide a better understanding of plant 3D structures. Point cloud segmentation is the basis for studying the 3D structure of plants through 3D point clouds, and accurate point cloud segmentation is crucial for extracting relevant phenotypic parameters. In this study, cabbage was used as an example, and a plant point cloud segmentation method combining deep learning algorithms and clustering algorithms was proposed. Specifically, a cabbage point cloud dataset was constructed using a 3D scanning platform. The ASAP attention module was incorporated into the PointNet++ model, resulting in the improved ASAP-PointNet model. Superior semantic segmentation performance on the cabbage point cloud dataset was demonstrated by this model. The workflow of the DBSCAN algorithm was also optimized, which exhibited enhanced performance in organ-level plant point cloud segmentation experiments. Subsequently, five phenotypic features were extracted. The experimental results revealed that an accuracy of 0.95 and an intersection over union (IoU) of 0.86 for semantic segmentation were achieved by the ASAP-PointNet model. The correlation coefficients between the four phenotype parameters (plant height, leaf length, leaf width, and leaf area) and their corresponding measured values were 0.96, 0.91, 0.95, and 0.94, respectively. An automated data analysis, from plant 3D point clouds to phenotypic parameters, is enabled by the proposed method, which serves as a valuable reference for plant phenotype research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细胞在江山在给细胞在江山在的求助进行了留言
刚刚
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
思源应助lzq采纳,获得10
4秒前
虞不斜完成签到 ,获得积分10
5秒前
VickyS发布了新的文献求助10
5秒前
zhou完成签到,获得积分20
6秒前
6秒前
传奇3应助mlly采纳,获得10
6秒前
无花果应助marketing采纳,获得10
7秒前
7秒前
momo完成签到,获得积分10
7秒前
渡花应助向浩采纳,获得10
8秒前
DDD关闭了DDD文献求助
8秒前
9秒前
9秒前
浮游应助木子采纳,获得10
9秒前
yuqinghui98发布了新的文献求助10
10秒前
10秒前
白蓝发布了新的文献求助10
10秒前
坦率的谷雪完成签到,获得积分10
11秒前
11秒前
别拿暗恋当饭吃完成签到 ,获得积分10
12秒前
岁晚发布了新的文献求助10
12秒前
12秒前
张张完成签到,获得积分10
13秒前
wxyshare应助XX采纳,获得10
13秒前
谦让夜香发布了新的文献求助10
15秒前
果子发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
17秒前
18秒前
marketing完成签到,获得积分20
18秒前
18秒前
Fishball完成签到,获得积分10
18秒前
cuigao完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632506
求助须知:如何正确求助?哪些是违规求助? 4727031
关于积分的说明 14982275
捐赠科研通 4790442
什么是DOI,文献DOI怎么找? 2558305
邀请新用户注册赠送积分活动 1518683
关于科研通互助平台的介绍 1479145