Learning an Interpretable End-to-End Network for Real-Time Acoustic Beamforming

可解释性 计算机科学 波束赋形 话筒 端到端原则 过程(计算) 人工智能 深度学习 机器学习 电信 声压 操作系统
作者
Hao Liang,Guanxing Zhou,Xiaotong Tu,Andreas Jakobsson,Xinghao Ding,Yue Huang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2306.10772
摘要

Recently, many forms of audio industrial applications, such as sound monitoring and source localization, have begun exploiting smart multi-modal devices equipped with a microphone array. Regrettably, model-based methods are often difficult to employ for such devices due to their high computational complexity, as well as the difficulty of appropriately selecting the user-determined parameters. As an alternative, one may use deep network-based methods, but these are often difficult to generalize, nor can they generate the desired beamforming map directly. In this paper, a computationally efficient acoustic beamforming algorithm is proposed, which may be unrolled to form a model-based deep learning network for real-time imaging, here termed the DAMAS-FISTA-Net. By exploiting the natural structure of an acoustic beamformer, the proposed network inherits the physical knowledge of the acoustic system, and thus learns the underlying physical properties of the propagation. As a result, all the network parameters may be learned end-to-end, guided by a model-based prior using back-propagation. Notably, the proposed network enables an excellent interpretability and the ability of being able to process the raw data directly. Extensive numerical experiments using both simulated and real-world data illustrate the preferable performance of the DAMAS-FISTA-Net as compared to alternative approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糊涂的青烟完成签到 ,获得积分10
刚刚
yaya完成签到,获得积分10
1秒前
4秒前
songge完成签到,获得积分10
8秒前
独孤完成签到 ,获得积分10
8秒前
敏er好学完成签到,获得积分10
10秒前
12秒前
小张完成签到 ,获得积分10
13秒前
xiemeili完成签到 ,获得积分10
13秒前
cdercder应助科研通管家采纳,获得10
17秒前
合适醉蝶完成签到 ,获得积分10
18秒前
Wang发布了新的文献求助10
19秒前
28秒前
无情的宛菡完成签到 ,获得积分10
29秒前
gangxiaxuan完成签到,获得积分10
34秒前
35秒前
Orange应助lauhoihung采纳,获得10
37秒前
发个15分的完成签到 ,获得积分10
37秒前
38秒前
38秒前
njseu完成签到 ,获得积分10
39秒前
行云流水完成签到,获得积分10
41秒前
虞无声完成签到,获得积分10
43秒前
Wangyingjie5发布了新的文献求助10
44秒前
Jayzie完成签到 ,获得积分10
45秒前
大椒完成签到 ,获得积分10
47秒前
我就想看看文献完成签到 ,获得积分10
48秒前
是是是WQ完成签到 ,获得积分0
49秒前
和谐雁荷完成签到 ,获得积分0
55秒前
zokor完成签到 ,获得积分10
55秒前
轩辕德地完成签到,获得积分10
1分钟前
杨宁完成签到 ,获得积分10
1分钟前
跳跃的鹏飞完成签到 ,获得积分10
1分钟前
mzrrong完成签到 ,获得积分10
1分钟前
YJ完成签到,获得积分10
1分钟前
lauhoihung完成签到,获得积分10
1分钟前
舒适映寒完成签到,获得积分10
1分钟前
1分钟前
小白完成签到,获得积分10
1分钟前
点点完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10301000
捐赠科研通 3057194
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626