Comparison for thermal imager performance assessment: TOD classifier versus YOLO-based models for object detection

分类器(UML) 计算机科学 人工智能 目标检测 模式识别(心理学) 计算机视觉
作者
Daniel Wegner,Stefan Keßler
标识
DOI:10.1117/12.3013706
摘要

Models for triangle orientation discrimination (TOD) have been proposed for performance evaluation of thermal imaging devices. For thermal imager assessment, human visual systems for TOD have been modeled and rigorously validated for a wide variety of image distortions through observer studies. As the conduct of observer trials is time-consuming and costly, also AI-based TOD models for imager assessment have been presented. Recently, camera systems with embedded automatic target recognition (ATR) are becoming increasingly important. So far it is an open question if the simple TOD task, as a classification problem with 4 classes, is suitable for providing similar evaluations and rankings for these thermal imaging devices as algorithms for more complex and slower tasks like object detection, e.g. for ATR. A widely used framework for object detection is "You Only Look Once" (YOLO).

In this work, performance assessments for TOD models and YOLO-based models are compared. Known image databases as well as synthetic images with triangles and natural backgrounds are degraded according to a unified device description with blur and image noise. The blur caused by optical diffraction and detector footprint is varied by multiple aperture diameters and detector sizes through the application of modulation transfer functions, while the image noise is varied by multiple noise error levels as Gaussian sensor noise. The TOD models are evaluated for the degraded images with triangles, while the YOLO models are applied to the degraded variants of the image databases. For different degradation parameters, the model precisions of the TOD models are compared to figures of merit of the YOLO models such as the mean average precision (mAP). Statistical uncertainties of the performance ranking for different degradation parameters of cameras and both TOD and YOLO models are investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
宛海发布了新的文献求助10
2秒前
大个应助焚心绚华绘采纳,获得10
2秒前
研猫完成签到 ,获得积分10
3秒前
3秒前
明天发布了新的文献求助10
3秒前
5秒前
5秒前
湫湫完成签到 ,获得积分10
6秒前
科目三应助直率新柔采纳,获得10
7秒前
Croissant完成签到 ,获得积分10
7秒前
核桃应助123采纳,获得10
7秒前
迷路远航完成签到,获得积分20
8秒前
8秒前
负责玉米完成签到,获得积分10
9秒前
他克莫司完成签到,获得积分10
9秒前
Owen应助修士采纳,获得10
9秒前
锡兰红茶发布了新的文献求助10
10秒前
10秒前
爆米花应助冷酷芫采纳,获得10
10秒前
斯文败类应助小卷采纳,获得10
11秒前
可爱的函函应助L-g-b采纳,获得10
12秒前
13秒前
13秒前
明天完成签到,获得积分20
15秒前
16秒前
16秒前
16秒前
16秒前
ssssbbbb完成签到,获得积分10
17秒前
完美世界应助任性的咖啡采纳,获得10
18秒前
18秒前
科研通AI5应助nn11采纳,获得30
19秒前
小王爱吃肉完成签到,获得积分20
19秒前
H-China发布了新的文献求助10
19秒前
缓慢的海云完成签到,获得积分10
20秒前
suresure发布了新的文献求助10
20秒前
修士发布了新的文献求助10
20秒前
斯寜给勇往直前的小怪的求助进行了留言
21秒前
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794786
求助须知:如何正确求助?哪些是违规求助? 3339647
关于积分的说明 10296816
捐赠科研通 3056360
什么是DOI,文献DOI怎么找? 1676964
邀请新用户注册赠送积分活动 804983
科研通“疑难数据库(出版商)”最低求助积分说明 762255