ResTransUnet: An effective network combined with Transformer and U-Net for liver segmentation in CT scans

计算机科学 分割 人工智能 变压器 医学 放射科 工程类 电气工程 电压
作者
Jiajie Ou,Linfeng Jiang,Ting Bai,Peidong Zhan,Ruihua Liu,Hanguang Xiao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:177: 108625-108625 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108625
摘要

Liver segmentation is a fundamental prerequisite for the diagnosis and surgical planning of hepatocellular carcinoma. Traditionally, the liver contour is drawn manually by radiologists using a slice-by-slice method. However, this process is time-consuming and error-prone, depending on the radiologist's experience. In this paper, we propose a new end-to-end automatic liver segmentation framework, named ResTransUNet, which exploits the transformer's ability to capture global context for remote interactions and spatial relationships, as well as the excellent performance of the original U-Net architecture. The main contribution of this paper lies in proposing a novel fusion network that combines Unet and Transformer architectures. In the encoding structure, a dual-path approach is utilized, where features are extracted separately using both convolutional neural networks (CNNs) and Transformer networks. Additionally, an effective feature enhancement unit is designed to transfer the global features extracted by the Transformer network to the CNN for feature enhancement. This model aims to address the drawbacks of traditional Unet-based methods, such as feature loss during encoding and poor capture of global features. Moreover, it avoids the disadvantages of pure Transformer models, which suffer from large parameter sizes and high computational complexity. The experimental results on the LiTS2017 dataset demonstrate remarkable performance for our proposed model, with Dice coefficients, volumetric overlap error (VOE), and relative volume difference (RVD) values for liver segmentation reaching 0.9535, 0.0804, and -0.0007, respectively. Furthermore, to further validate the model's generalization capability, we conducted tests on the 3Dircadb, Chaos, and Sliver07 datasets. The experimental results demonstrate that the proposed method outperforms other closely related models with higher liver segmentation accuracy. In addition, significant improvements can be achieved by applying our method when handling liver segmentation with small and discontinuous liver regions, as well as blurred liver boundaries. The code is available at the website: https://github.com/Jouiry/ResTransUNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
脑洞疼应助网鱼采纳,获得10
刚刚
刚刚
aurora完成签到 ,获得积分10
2秒前
lierikafei发布了新的文献求助10
2秒前
Tomma发布了新的文献求助10
2秒前
2秒前
科研通AI5应助平淡的寒风采纳,获得10
2秒前
白色风车完成签到,获得积分10
2秒前
科研通AI5应助wang采纳,获得10
3秒前
3秒前
4秒前
4秒前
眼睛大冬日完成签到 ,获得积分10
4秒前
脑洞疼应助方向采纳,获得10
4秒前
危机的如容完成签到,获得积分10
4秒前
4秒前
搜集达人应助skyline采纳,获得10
4秒前
SYYY完成签到,获得积分10
5秒前
oio完成签到,获得积分20
5秒前
蒙扎发布了新的文献求助10
5秒前
852应助gdh采纳,获得10
5秒前
5秒前
隐形曼青应助懒羊羊采纳,获得10
5秒前
星空完成签到,获得积分10
5秒前
5秒前
6秒前
aetherron发布了新的文献求助10
6秒前
乐观绮露发布了新的文献求助10
6秒前
球球发布了新的文献求助10
7秒前
7秒前
8秒前
搜集达人应助结实听莲采纳,获得10
8秒前
慕青应助美好的千凝采纳,获得10
9秒前
wangerer完成签到,获得积分10
9秒前
chuchu发布了新的文献求助10
9秒前
9秒前
大方弘文发布了新的文献求助10
9秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806414
求助须知:如何正确求助?哪些是违规求助? 3351123
关于积分的说明 10353069
捐赠科研通 3067011
什么是DOI,文献DOI怎么找? 1684232
邀请新用户注册赠送积分活动 809433
科研通“疑难数据库(出版商)”最低求助积分说明 765515