State-of-art technologies, challenges, and emerging trends of computer vision in dental images

计算机科学 国家(计算机科学) 数据科学 人工智能 计算机视觉 计算机图形学(图像) 算法
作者
J. Priya,S. Kanaga Suba Raja,S. Kiruthika
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:178: 108800-108800 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108800
摘要

Computer vision falls under the broad umbrella of artificial intelligence that mimics human vision and plays a vital role in dental imaging. Dental practitioners visualize and interpret teeth, and the structure surrounding the teeth and detect abnormalities by manually examining various dental imaging modalities. Due to the complexity and cognitive difficulty of comprehending medical data, human error makes correct diagnosis difficult. Automated diagnosis may be able to help alleviate delays, hasten practitioners' interpretation of positive cases, and lighten their workload. Several medical imaging modalities like X-rays, CT scans, color images, etc. that are employed in dentistry are briefly described in this survey. Dentists employ dental imaging as a diagnostic tool in several specialties, including orthodontics, endodontics, periodontics, etc. In the discipline of dentistry, computer vision has progressed from classic image processing to machine learning with mathematical approaches and robust deep learning techniques. Here conventional image processing techniques solely as well as in conjunction with intelligent machine learning algorithms, and sophisticated architectures of dental radiograph analysis employ deep learning techniques. This study provides a detailed summary of several tasks, including anatomical segmentation, identification, and categorization of different dental anomalies with their shortfalls as well as future perspectives in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weiweiwu12发布了新的文献求助10
1秒前
1秒前
铭铭铭完成签到,获得积分10
2秒前
2秒前
joey完成签到,获得积分10
2秒前
ccc完成签到,获得积分10
2秒前
访云完成签到 ,获得积分10
2秒前
chandlerwong完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
躺平girl发布了新的文献求助10
4秒前
轻松沛凝完成签到,获得积分10
4秒前
5秒前
5秒前
陈杨完成签到 ,获得积分10
5秒前
李明发布了新的文献求助10
6秒前
简单的早晨关注了科研通微信公众号
6秒前
6秒前
科研通AI2S应助复杂的天玉采纳,获得10
7秒前
7秒前
魔幻凡梅发布了新的文献求助10
8秒前
天真的冬寒完成签到,获得积分20
8秒前
李克杨发布了新的文献求助10
9秒前
9秒前
Alexbirchurros完成签到 ,获得积分10
9秒前
穆振家完成签到,获得积分10
10秒前
善学以致用应助zzz采纳,获得10
10秒前
蓝调爱科研应助Chroninus采纳,获得10
11秒前
躺平girl完成签到,获得积分10
12秒前
虞人达完成签到 ,获得积分20
12秒前
Ming发布了新的文献求助10
12秒前
Milou发布了新的文献求助10
13秒前
Orange应助Ming采纳,获得10
17秒前
捕鱼小猫勇往直前完成签到,获得积分10
18秒前
19秒前
852应助AI采纳,获得10
20秒前
科研小白完成签到,获得积分10
21秒前
yang完成签到,获得积分10
22秒前
SciGPT应助宵宫采纳,获得10
22秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817454
求助须知:如何正确求助?哪些是违规求助? 3360792
关于积分的说明 10409392
捐赠科研通 3078887
什么是DOI,文献DOI怎么找? 1690844
邀请新用户注册赠送积分活动 814169
科研通“疑难数据库(出版商)”最低求助积分说明 768060