材料科学
法拉第效率
电化学
密度泛函理论
催化作用
X射线光电子能谱
可逆氢电极
纳米技术
吸附
电子转移
X射线吸收光谱法
吸收光谱法
化学物理
化学工程
电极
光化学
物理化学
计算化学
工作电极
工程类
物理
量子力学
生物化学
化学
作者
Yanzhi Xu,Xu Zhang,Chenyu Yang,Chen Gong,Xupeng Qin,Haixin Sun,Honglei Chen,Mikhail A. Soldatov,Kun Zheng,Changli Li,Tao Gan,Jiong Li,Jingfu He,Qinghua Liu
标识
DOI:10.1002/aenm.202400143
摘要
Abstract The electrochemical reduction of CO 2 (eCO 2 RR) that exclusively produces one product at industrial current density is crucial for the substantial storage of renewable energy. Modulating the electronic structure of atomically dispersed catalysts can effectively regulate the adsorption of rate‐determining‐step intermediates to achieve the desired products. Here, the study constructs a hybrid catalyst consisting of single Ag atoms and Ag atomic clusters supported on nitrogen‐doped multi‐walled carbon nanotubes that can effectively regulate the important intermediate structure of *COOH. The X‐ray photoelectron and X‐ray absorption near‐edge spectroscopies demonstrate that turning Ag single atoms into Ag clusters can weaken the electron transfer between Ag–N and present a relatively rich electron state. Thus, the rate‐determining step of *COOH massive formation is significantly accelerated, as proven by in situ synchrotron infrared spectroscopy and density functional theory calculations. Using this strategy, a CO Faradaic efficiency outperforming 99% from −0.3 to −0.8 V (vs reversible hydrogen electrode) with current densities above 200 mA cm −2 and a half‐cell energetic efficiency of 86% is achieved. This work highlights a promising approach to advancing synergistic catalysts for achieving more controllable and efficient eCO 2 RR.
科研通智能强力驱动
Strongly Powered by AbleSci AI