Multi-modal Food Recommendation using Clustering and Self-supervised Learning

聚类分析 情态动词 计算机科学 人工智能 模式识别(心理学) 机器学习 材料科学 高分子化学
作者
Yixin Zhang,Xin Zhou,Qianwen Meng,Fanglin Zhu,Yonghui Xu,Zhiqi Shen,Lizhen Cui
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.18962
摘要

Food recommendation systems serve as pivotal components in the realm of digital lifestyle services, designed to assist users in discovering recipes and food items that resonate with their unique dietary predilections. Typically, multi-modal descriptions offer an exhaustive profile for each recipe, thereby ensuring recommendations that are both personalized and accurate. Our preliminary investigation of two datasets indicates that pre-trained multi-modal dense representations might precipitate a deterioration in performance compared to ID features when encapsulating interactive relationships. This observation implies that ID features possess a relative superiority in modeling interactive collaborative signals. Consequently, contemporary cutting-edge methodologies augment ID features with multi-modal information as supplementary features, overlooking the latent semantic relations between recipes. To rectify this, we present CLUSSL, a novel food recommendation framework that employs clustering and self-supervised learning. Specifically, CLUSSL formulates a modality-specific graph tailored to each modality with discrete/continuous features, thereby transforming semantic features into structural representation. Furthermore, CLUSSL procures recipe representations pertinent to different modalities via graph convolutional operations. A self-supervised learning objective is proposed to foster independence between recipe representations derived from different unimodal graphs. Comprehensive experiments on real-world datasets substantiate that CLUSSL consistently surpasses state-of-the-art recommendation benchmarks in performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美曲奇完成签到,获得积分10
1秒前
lulu发布了新的文献求助10
1秒前
1秒前
2秒前
英俊的铭应助活泼香芦采纳,获得10
2秒前
Chem34完成签到,获得积分10
2秒前
刘歌发布了新的文献求助10
3秒前
3秒前
Vi发布了新的文献求助10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
4秒前
浮游应助小小莫采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
4秒前
充电宝应助科研通管家采纳,获得30
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
Hello应助Cruffin采纳,获得10
4秒前
CipherSage应助狂野的南松采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助走四方采纳,获得10
5秒前
5秒前
5秒前
嘻嘻完成签到 ,获得积分10
6秒前
couch发布了新的文献求助30
6秒前
xkhxh发布了新的文献求助10
6秒前
7秒前
7秒前
高瑞琪完成签到,获得积分10
7秒前
8秒前
喜悦的虔发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462518
求助须知:如何正确求助?哪些是违规求助? 4567225
关于积分的说明 14309649
捐赠科研通 4493103
什么是DOI,文献DOI怎么找? 2461427
邀请新用户注册赠送积分活动 1450522
关于科研通互助平台的介绍 1425854