Boosting Micro-Expression Recognition via Self-Expression Reconstruction and Memory Contrastive Learning

Boosting(机器学习) 表达式(计算机科学) 人工智能 计算机科学 面部表情识别 语音识别 模式识别(心理学) 心理学 面部识别系统 程序设计语言
作者
Yongtang Bao,Chenxi Wu,Peng Zhang,Caifeng Shan,Yue Qi,Xianye Ben
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:15 (4): 2083-2096 被引量:22
标识
DOI:10.1109/taffc.2024.3397701
摘要

Micro-expression (ME) is an instinctive reaction that is not controlled by thoughts. It reveals one's inner feelings, which is significant in sentiment analysis and lie detection. Since micro-expression is expressed as subtle facial changes within particular facial action units, learning discriminative and generalized features for Micro-expression Recognition (MER) is challenging. To achieve the purpose, this paper proposes a novel MER framework that simultaneously integrates supervised Prototype-based Memory Contrastive Learning (PMCL) for discriminative feature mining and adds Self-expression Reconstruction (SER) as an auxiliary task and regularization for better generalization. In particular, the proposed SER module is forced as a regularization by reconstructing input ME from the randomly dropped patch- wise features in the bottleneck. And, the PMCL module globally compares historical and current cluster agents learned from training instances to enhance intra-class compactness and inter-class separability. Extensive experiments are conducted on three benchmarks, e.g., SMIC, CASME II, and SAMM, under evaluation criteria of both Composite Database Evaluation (CDE) and Single Database Evaluation (SDE) protocols. The results show our method surpasses other state-of-the-art approaches under various evaluation metrics, achieving overall 86.30% unweighed F1-score and 88.30% unweighed average recall on the composite dataset. Furthermore, the ablation studies verify the effectiveness of our SER for better generalization and PMCL for better discrimination in learning feature representation from limited micro-expression samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酒尚温完成签到 ,获得积分10
刚刚
大胆的音响完成签到 ,获得积分10
刚刚
刚刚
2秒前
今后应助852采纳,获得10
2秒前
英勇冬瓜发布了新的文献求助10
5秒前
Cheryl完成签到,获得积分10
5秒前
8秒前
Rain发布了新的文献求助10
8秒前
冷酷的小之完成签到,获得积分10
8秒前
汉堡包应助书记采纳,获得10
8秒前
10秒前
10秒前
123发布了新的文献求助20
11秒前
张怡凯完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
丘比特应助DoctorChang采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
HHUMLH完成签到 ,获得积分10
14秒前
共享精神应助书记采纳,获得10
17秒前
OMR123完成签到,获得积分10
17秒前
17秒前
yishan101发布了新的文献求助10
17秒前
kilo完成签到,获得积分10
17秒前
17秒前
Owen应助qiaozhen采纳,获得10
17秒前
852发布了新的文献求助10
18秒前
Frank应助开心的大米采纳,获得10
19秒前
木草发布了新的文献求助10
19秒前
20秒前
大模型应助体贴的之柔采纳,获得10
23秒前
23秒前
24秒前
大个应助怡然的夏之采纳,获得10
24秒前
25秒前
JamesPei应助书记采纳,获得10
25秒前
25秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420975
求助须知:如何正确求助?哪些是违规求助? 4535956
关于积分的说明 14152070
捐赠科研通 4452716
什么是DOI,文献DOI怎么找? 2442515
邀请新用户注册赠送积分活动 1433930
关于科研通互助平台的介绍 1411024