准晶
拓扑(电路)
拓扑群
拓扑代数
物理中的拓扑熵
简单(哲学)
拓扑序
交换性质
群(周期表)
非周期图
代数拓扑学
量子
拓扑量子数
理论物理学
物理
数学
量子力学
纯数学
组合数学
凝聚态物理
哲学
同伦
认识论
标识
DOI:10.1002/ijch.202400027
摘要
Abstract We provide an overview on the theory of topological quantum numbers from the point of view of non‐commutative topology. Topological phases are described by K ‐groups of C *‐algebras. The algebras are constructed from the set of positions of the nuclei of the materials we want to study. Topological quantum numbers are Chern numbers of K ‐group elements. Maps between K ‐groups which are of algebraic topological origin provide the means to obtain relations between different topological quantum numbers as, for instance, in the bulk edge correspondence. We present simple aperiodic examples related to quasicrystals to illustrate the theory.
科研通智能强力驱动
Strongly Powered by AbleSci AI