Multi-class Classification of Retinal Eye Diseases from Ophthalmoscopy Images Using Transfer Learning-Based Vision Transformers

检眼镜 人工智能 验光服务 学习迁移 视网膜 计算机科学 计算机视觉 眼科 医学
作者
Elif Setenay Cutur,Neslihan Gökmen İnan
标识
DOI:10.1007/s10278-025-01416-7
摘要

This study explores a transfer learning approach with vision transformers (ViTs) and convolutional neural networks (CNNs) for classifying retinal diseases, specifically diabetic retinopathy, glaucoma, and cataracts, from ophthalmoscopy images. Using a balanced subset of 4217 images and ophthalmology-specific pretrained ViT backbones, this method demonstrates significant improvements in classification accuracy, offering potential for broader applications in medical imaging. Glaucoma, diabetic retinopathy, and cataracts are common eye diseases that can cause vision loss if not treated. These diseases must be identified in the early stages to prevent eye damage progression. This paper focuses on the accurate identification and analysis of disparate eye diseases, including glaucoma, diabetic retinopathy, and cataracts, using ophthalmoscopy images. Deep learning (DL) has been widely used in image recognition for the early detection and treatment of eye diseases. In this study, ResNet50, DenseNet121, Inception-ResNetV2, and six variations of ViT are employed, and their performance in diagnosing diseases such as glaucoma, cataracts, and diabetic retinopathy is evaluated. In particular, the article uses the vision transformer model as an automated method to diagnose retinal eye diseases, highlighting the accuracy of pre-trained deep transfer learning (DTL) structures. The updated ViT#5 model with the augmented-regularized pre-trained model (AugReg ViT-L/16_224) and learning rate of 0.00002 outperforms the state-of-the-art techniques, obtaining a data-based accuracy score of 98.1% on a publicly accessible retinal ophthalmoscopy image dataset, which includes 4217 images. In most categories, the model outperforms other convolutional-based and ViT models in terms of accuracy, precision, recall, and F1 score. This research contributes significantly to medical image analysis, demonstrating the potential of AI in enhancing the precision of eye disease diagnoses and advocating for the integration of artificial intelligence in medical diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
bc应助杨jinan采纳,获得10
5秒前
10秒前
008发布了新的文献求助10
10秒前
hope完成签到,获得积分10
12秒前
HEAUBOOK完成签到,获得积分10
14秒前
duo完成签到,获得积分10
14秒前
wanci应助BUAAzmt采纳,获得10
15秒前
cdercder应助TengDa采纳,获得10
16秒前
佟语雪完成签到,获得积分10
16秒前
fang完成签到,获得积分10
17秒前
JamesPei应助文献通采纳,获得10
18秒前
心心完成签到 ,获得积分10
20秒前
25秒前
25秒前
28秒前
BUAAzmt发布了新的文献求助10
28秒前
29秒前
30秒前
萧水白完成签到,获得积分10
30秒前
杨炀发布了新的文献求助10
31秒前
张润泽完成签到 ,获得积分10
32秒前
苏苏爱学习完成签到 ,获得积分10
32秒前
养猪大户完成签到 ,获得积分10
33秒前
34秒前
梓毅完成签到,获得积分10
34秒前
tong童完成签到 ,获得积分10
35秒前
李健春发布了新的文献求助10
35秒前
cuc完成签到,获得积分10
36秒前
难得糊涂完成签到,获得积分10
36秒前
huahua完成签到 ,获得积分10
36秒前
文献通发布了新的文献求助10
38秒前
cuc发布了新的文献求助10
39秒前
11111111111完成签到,获得积分10
41秒前
杨炀完成签到,获得积分10
42秒前
蜡笔小新完成签到,获得积分10
42秒前
yanzu完成签到,获得积分0
44秒前
bc应助AFong采纳,获得10
44秒前
郑小七完成签到,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777749
求助须知:如何正确求助?哪些是违规求助? 3323268
关于积分的说明 10213319
捐赠科研通 3038533
什么是DOI,文献DOI怎么找? 1667522
邀请新用户注册赠送积分活动 798139
科研通“疑难数据库(出版商)”最低求助积分说明 758275