A Systematic Review of Artificial Intelligence in Orthopaedic Disease Detection: A Taxonomy for Analysis and Trustworthiness Evaluation

分类学(生物学) 可信赖性 计算机科学 人工智能 数据科学 管理科学 工程类 计算机安全 生物 植物
作者
Thura J. Mohammed,XinYing Chew,Alhamzah Alnoor,Khai Wah Khaw,A. S. Albahri,Wei Lin Teoh,Z CHONG,Sajal Saha
出处
期刊:International Journal of Computational Intelligence Systems [Springer Nature]
卷期号:17 (1) 被引量:5
标识
DOI:10.1007/s44196-024-00718-y
摘要

Abstract Orthopaedic diseases, which affect millions of people globally, present significant diagnostic challenges, often leading to long-term disability and chronic pain. There is an ongoing debate across the literature regarding the trustworthiness of artificial intelligence (AI) in detecting orthopaedic diseases. This systematic review aims to provide a comprehensive taxonomy of AI applications in orthopaedic disease detection. A thorough literature search was conducted across five major databases (Science Direct, Scopus, IEEE Xplore, PubMed, and Web of Science) covering publications from January 2019 to 2024. Following rigorous screening on the basis of predefined inclusion criteria, 85 relevant studies were identified and critically evaluated. For the first time, this review classifies AI contributions into six key categories of orthopaedic conditions on the basis of medical perspective: arthritis, tumours, deformities, fractures, osteoporosis, and general bone abnormalities. In addition to analyzing motivations, challenges, and recommendations for future research, this review highlights the various AI techniques employed, including deep learning (DL), machine learning (ML), explainable AI (XAI), fuzzy logic, and multicriteria decision-making (MCDM), as well as the datasets utilized. Furthermore, the trustworthiness of AI models is evaluated on the basis of seven AI trustworthiness components, aligned with European Union guidelines, within each category. These findings underscore the need for high-quality research to ensure that AI computational systems in orthopaedic disease detection are reliable, safe, and ethical. Future research should focus on optimizing AI algorithms, improving dataset diversity, and addressing ethical and regulatory challenges to ensure successful integration into clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
天天快乐应助羽渡尘采纳,获得10
1秒前
1秒前
老野猫发布了新的文献求助10
2秒前
丰知然应助墨痕采纳,获得10
3秒前
李健的小迷弟应助米妮采纳,获得10
3秒前
大模型应助妩媚的世界采纳,获得10
3秒前
元谷雪应助栖风南亭采纳,获得10
4秒前
海晨发布了新的文献求助10
4秒前
丘比特应助李告非采纳,获得10
5秒前
ROSE完成签到 ,获得积分20
5秒前
端庄的正豪完成签到,获得积分10
5秒前
5秒前
于yu发布了新的文献求助10
6秒前
coryyyy发布了新的文献求助10
6秒前
辣辣啦发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
搜集达人应助bb采纳,获得10
8秒前
8秒前
今后应助自觉的小凝采纳,获得10
9秒前
10秒前
顺心书琴发布了新的文献求助10
10秒前
李佳发布了新的文献求助10
10秒前
Lucas应助rudjs采纳,获得10
11秒前
lito完成签到,获得积分10
12秒前
cc发布了新的文献求助10
12秒前
12秒前
晓竹发布了新的文献求助10
13秒前
14秒前
高兴绿柳完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
稻草人完成签到,获得积分10
15秒前
1q关闭了1q文献求助
15秒前
隐形曼青应助aaa采纳,获得10
17秒前
完美世界应助书书采纳,获得10
17秒前
Yuan给YY的求助进行了留言
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546918
求助须知:如何正确求助?哪些是违规求助? 4632695
关于积分的说明 14628066
捐赠科研通 4574237
什么是DOI,文献DOI怎么找? 2508181
邀请新用户注册赠送积分活动 1484742
关于科研通互助平台的介绍 1455845