Improved YOLOv8 Model for Phenotype Detection of Horticultural Seedling Growth Based on Digital Cousin

苗木 表弟 表型 生物 遗传学 农学 地理 基因 考古
作者
Ya-Pan Song,Lin Yang,Shuo Li,Xin Yang,Chaoqiong Ma,Yuan Huang,Nazir Hussain
出处
期刊:Agriculture [MDPI AG]
卷期号:15 (1): 28-28
标识
DOI:10.3390/agriculture15010028
摘要

Crop phenotype detection is a precise way to understand and predict the growth of horticultural seedlings in the smart agriculture era to increase the cost-effectiveness and energy efficiency of agricultural production. Crop phenotype detection requires the consideration of plant stature and agricultural devices, like robots and autonomous vehicles, in smart greenhouse ecosystems. However, collecting the imaging dataset is a challenge facing the deep learning detection of plant phenotype given the dynamic changes among leaves and the temporospatial limits of camara sampling. To address this issue, digital cousin is an improvement on digital twins that can be used to create virtual entities of plants through the creation of dynamic 3D structures and plant attributes using RGB image datasets in a simulation environment, using the principles of the variations and interactions of plants in the physical world. Thus, this work presents a two-phase method to obtain the phenotype of horticultural seedling growth. In the first phase, 3D Gaussian splatting is selected to reconstruct and store the 3D model of the plant with 7000 and 30,000 training rounds, enabling the capture of RGB images and the detection of the phenotypes of the seedlings, overcoming temporal and spatial limitations. In the second phase, an improved YOLOv8 model is created to segment and measure the seedlings, and it is modified by adding the LADH, SPPELAN, and Focaler-ECIoU modules. Compared with the original YOLOv8, the precision of our model is 91%, and the loss metric is lower by approximately 0.24. Moreover, a case study of watermelon seedings is examined, and the results of the 3D reconstruction of the seedlings show that our model outperforms classical segmentation algorithms on the main metrics, achieving a 91.0% mAP50 (B) and a 91.3% mAP50 (M).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
felix发布了新的文献求助10
2秒前
felix发布了新的文献求助10
2秒前
felix发布了新的文献求助10
2秒前
宋宋不迷糊完成签到 ,获得积分10
2秒前
吴侬软语完成签到 ,获得积分10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
曾无忧应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
HL发布了新的文献求助10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
一一应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
少女徐必成完成签到 ,获得积分10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
传奇3应助Double_N采纳,获得10
5秒前
一一应助科研通管家采纳,获得10
5秒前
Mic应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得60
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
Mic应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
大西瓜完成签到,获得积分20
5秒前
小药童应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
6秒前
一一应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5456480
求助须知:如何正确求助?哪些是违规求助? 4563301
关于积分的说明 14289173
捐赠科研通 4487878
什么是DOI,文献DOI怎么找? 2458063
邀请新用户注册赠送积分活动 1448425
关于科研通互助平台的介绍 1424016