A New Approach to Population Growth Model Involving a Logistic Differential Equation of Fractional Order

逻辑函数 订单(交换) 微分方程 人口 应用数学 逻辑回归 分数阶微积分 数学 统计 生物系统 数学分析 生物 医学 经济 环境卫生 财务
作者
Deepika Jain,Dhruv Khandelwal,Sumit Gupta
出处
期刊:Critical Reviews in Biomedical Engineering [Begell House Inc.]
卷期号:53 (2): 37-48
标识
DOI:10.1615/critrevbiomedeng.2024055114
摘要

Population growth and its consequences remain one of the most pressing challenges of our time. The study of population dynamics, including factors like resource availability, disease, and environmental constraints, is fundamental for planning in various domains such as ecology, economics, and public health. One of the earliest models proposed to explain population growth was by Thomas Robert Malthus in the late 18th century. Malthus theorized that populations grow exponentially, while the food supply increases only in an arithmetic manner and that was explained by a mathematical model i.e. the population growth model. This imbalance, according to Malthus, could eventually lead to resource scarcity and population collapse. However, Malthus's model, though foundational, was simplistic in nature. Over time, a more refined and realistic model was developed by Pierre François Verhulst, a Belgian mathematician, which led to the formulation of the logistic growth model. This model involves a fractional differential equation (FDE) namely the logistic differential equation. Due to the significance of FDEs, several authors have proposed solutions for the model using different techniques. Our work finds this model's solution using the Laplace decomposition method (LDM) approach. The method represents a significant advancement in the tool case of applied mathematicians and scientists. Its ability to efficiently and accurately solve complex differential equations, especially FPDEs. The graphical interpretation of the behavior of the result is also mentioned and compare our results with exact solutions found in literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
4秒前
贪玩的网络完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
一颗糖完成签到 ,获得积分10
13秒前
Ha完成签到,获得积分10
17秒前
孙畅完成签到,获得积分10
19秒前
19秒前
科研通AI2S应助Bin_Liu采纳,获得10
19秒前
花誓lydia完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
了0完成签到 ,获得积分10
26秒前
沉静的安露完成签到 ,获得积分10
26秒前
行云流水完成签到,获得积分10
26秒前
Lrcx完成签到 ,获得积分10
28秒前
28秒前
量子星尘发布了新的文献求助10
30秒前
31秒前
jh完成签到 ,获得积分10
31秒前
32秒前
34秒前
34秒前
嘻嘻哈哈发布了新的文献求助10
39秒前
39秒前
41秒前
hhh2018687完成签到,获得积分10
43秒前
DW123完成签到,获得积分10
44秒前
量子星尘发布了新的文献求助10
47秒前
量子星尘发布了新的文献求助10
49秒前
YifanWang应助潇潇雨歇采纳,获得10
55秒前
六一儿童节完成签到 ,获得积分0
55秒前
56秒前
sxb10101完成签到 ,获得积分0
57秒前
YaoZhang完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
YifanWang应助潇潇雨歇采纳,获得10
1分钟前
南攻完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773300
求助须知:如何正确求助?哪些是违规求助? 5609636
关于积分的说明 15430839
捐赠科研通 4905843
什么是DOI,文献DOI怎么找? 2639857
邀请新用户注册赠送积分活动 1587764
关于科研通互助平台的介绍 1542761