A novel real‐time crayfish weight grading method based on improved Swin Transformer

小龙虾 相关系数 分级(工程) 变压器 分割 计算机科学 数学 人工智能 模式识别(心理学) 统计 工程类 渔业 生物 生态学 电压 电气工程
作者
Ke Wen,Yan Chen,Zhengwei Zhu,Jinzhou Yang,Jie Bao,Dandan Fu,Z. Hu,X. -S. Peng,Jiao Ming
出处
期刊:Journal of Food Science [Wiley]
卷期号:90 (2)
标识
DOI:10.1111/1750-3841.70008
摘要

Abstract This study proposed a novel detection method for crayfish weight classification based on an improved Swin‐Transformer model. The model demonstrated a Mean Intersection over Union (MIOU) of 90.36% on the crayfish dataset, outperforming the IC‐Net, DeepLabV3, and U‐Net models by 17.44%, 5.55%, and 1.01%, respectively. Furthermore, the segmentation accuracy of the Swin‐Transformer model reached 99.0%, surpassing the aforementioned models by 1.25%, 1.73%, and 0.46%, respectively. To facilitate weight prediction of crayfish from segmented images, this study also investigated the correlation between the projected area and the weight of each crayfish part, and developed a multiple regression model with a correlation coefficient of 0.983 by comparing the total projected area and the relationship between the projected area and the actual weight of each crayfish part. To validate this model, a test set of 40 samples was employed, with the average prediction accuracy reaching 98.34% based on 10 representative data points. Finally, grading experiments were carried out on the crayfish weight grading system, and the experimental results showed that the grading accuracy could reach more than 86.5%, confirming the system's feasibility. The detection method not only predicts the weight based on the area but also incorporates the proportional relationship of the area of each part to improve the accuracy of the prediction further. This innovation makes up for the limitations of traditional inspection methods and shows higher potential for application. This study has important applications in industrial automation, especially for real‐time high‐precision weight grading in the aquatic processing industry, which can improve production efficiency and optimize quality control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kai完成签到,获得积分10
刚刚
刚刚
慕青应助露露采纳,获得10
1秒前
1秒前
2秒前
温暖的以旋完成签到,获得积分10
3秒前
4秒前
科研通AI2S应助mic采纳,获得10
5秒前
linmo发布了新的文献求助10
5秒前
不要加糖发布了新的文献求助10
5秒前
传奇3应助易安采纳,获得10
5秒前
张远幸发布了新的文献求助10
6秒前
6秒前
guobin发布了新的文献求助10
6秒前
6秒前
hellohtc发布了新的文献求助10
7秒前
YifanWang应助潇潇雨歇采纳,获得50
7秒前
jessia发布了新的文献求助10
7秒前
hjyylab应助早起困困采纳,获得10
9秒前
林槿发布了新的文献求助10
9秒前
Eason小川完成签到,获得积分10
10秒前
10秒前
丘比特应助JAL采纳,获得10
11秒前
ZJK完成签到,获得积分20
11秒前
12秒前
果实发布了新的文献求助10
13秒前
Eason小川发布了新的文献求助10
14秒前
Jasper应助笨笨电灯胆采纳,获得10
15秒前
露露发布了新的文献求助10
15秒前
ding应助daD采纳,获得10
15秒前
jisoo发布了新的文献求助10
15秒前
16秒前
丘比特应助神勇砖头采纳,获得10
18秒前
18秒前
Eureka完成签到,获得积分10
20秒前
JamesPei应助李先生采纳,获得10
20秒前
21秒前
和谐的果汁完成签到 ,获得积分10
21秒前
素和姣姣完成签到,获得积分10
21秒前
赘婿应助xiang采纳,获得10
21秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3914776
求助须知:如何正确求助?哪些是违规求助? 3460110
关于积分的说明 10909608
捐赠科研通 3186853
什么是DOI,文献DOI怎么找? 1761615
邀请新用户注册赠送积分活动 852212
科研通“疑难数据库(出版商)”最低求助积分说明 793213