Simultaneous Improvement of Multiple Electrical Characteristics in Ultrathin a-IGZO TFTs Using Machine Learning Optimization

材料科学 光电子学 纳米技术
作者
Hyunkyu Yang,Jiho Lee,C.M. Park,Chan Lee,Minho Jin,Jiyeon Kim,Jong Chan Shin,Suhwan Hwang,Eungkyu Lee,Youn Sang Kim
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c22658
摘要

While IGZO is emerging as a promising channel material to address the scaling limitations of conventional silicon-based DRAM, its application in next-generation 3D DRAM requires further advancements in achieving ultrathin structures and excellent performance tailored to DRAM characteristics. Specifically, optimizing process variables is essential for enhancing mobility in ultrathin structures, where mobility tends to degrade significantly, while maintaining a constant threshold voltage, a task that is both experimentally intensive and resource-demanding. This study employed multi-objective Bayesian optimization (MOBO) machine learning (ML) to simultaneously optimize multiple electrical objectives, aiming to achieve high mobility and a near-zero threshold voltage for ultrathin IGZO thin-film transistors (TFTs) under complex sputtering conditions, involving a wide range of possible combinations of Ar gas flow, sputtering power, and working pressure. Integrating empirical insights and expert knowledge into feature extraction, the MOBO approach leveraged human-driven expertise to optimize field-effect mobility and threshold voltage within the solution space. With ML assistance, a Pareto-optimal front was constructed to visualize trade-offs, achieving high field-effect mobility of 33.1 cm2/V·s and near-zero threshold voltage of -0.05 V at a 7.47 nm channel thickness. This approach is expected advance next-generation semiconductor technologies, offering exceptional gains in both efficiency and performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助十一月采纳,获得10
刚刚
沫荔完成签到 ,获得积分10
刚刚
丘离完成签到,获得积分10
刚刚
言弃完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
FAYE完成签到,获得积分10
2秒前
搜集达人应助yu采纳,获得10
2秒前
2秒前
风起人散完成签到,获得积分10
3秒前
小海绵完成签到,获得积分20
4秒前
zzzz完成签到,获得积分10
5秒前
丘比特应助123455采纳,获得10
5秒前
狂野的河马完成签到,获得积分10
5秒前
modesty发布了新的文献求助10
5秒前
勤劳代亦发布了新的文献求助10
5秒前
勤奋的松鼠完成签到,获得积分10
6秒前
6秒前
李健应助SUKI采纳,获得10
6秒前
背后的鹭洋完成签到,获得积分10
7秒前
hahage发布了新的文献求助10
7秒前
1762120发布了新的文献求助10
8秒前
five43完成签到,获得积分10
8秒前
淡淡的发卡完成签到,获得积分10
8秒前
momo应助QIN采纳,获得20
9秒前
9秒前
暗黑同学完成签到,获得积分10
9秒前
林林完成签到,获得积分10
9秒前
完美的八宝粥完成签到,获得积分20
9秒前
豆丁完成签到,获得积分10
10秒前
默默磨墨完成签到,获得积分10
10秒前
10秒前
雪白幻雪完成签到,获得积分10
11秒前
fr0zen发布了新的文献求助10
11秒前
CodeCraft应助modesty采纳,获得10
11秒前
吴梓豪完成签到,获得积分10
12秒前
小酒迟疑完成签到,获得积分10
12秒前
全菌的DEPC水应助wenqing采纳,获得10
13秒前
SQL完成签到 ,获得积分10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977279
求助须知:如何正确求助?哪些是违规求助? 3521516
关于积分的说明 11208407
捐赠科研通 3258500
什么是DOI,文献DOI怎么找? 1799287
邀请新用户注册赠送积分活动 878142
科研通“疑难数据库(出版商)”最低求助积分说明 806800