A Systematic Review on Recent Advancements in Deep and Machine Learning Based Detection and Classification of Acute Lymphoblastic Leukemia

人工智能 深度学习 计算机科学 机器学习 卷积神经网络 学习迁移 自编码 淋巴细胞白血病 白血病 医学 内科学
作者
Pradeep Das,Vora Diya,Sukadev Meher,Rutuparna Panda,Ajith Abraham
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 81741-81763 被引量:74
标识
DOI:10.1109/access.2022.3196037
摘要

Automatic Leukemia or blood cancer detection is a challenging job and is very much required in healthcare centers.It has a significant role in early diagnosis and treatment planning.Leukemia is a hematological disorder that starts from the bone marrow and affects white blood cells (WBCs).Microscopic analysis of WBCs is a preferred approach for an early detection of Leukemia since it is cost-effective and less painful.Very few literature reviews have been done to demonstrate a comprehensive analysis of deep and machine learning-based Acute Lymphoblastic Leukemia (ALL) detection.This article presents a systematic review of the recent advancements in this knowledge domain.Here, various artificial intelligence-based ALL detection approaches are analyzed in a systematic manner with merits and demits.The review of these schemes is conducted in a structured manner.For this purpose, segmentation schemes are broadly categorized into signal and image processing-based techniques, conventional machine learning-based techniques, and deep learning-based techniques.Conventional machine learning-based ALL classification approaches are categorized into supervised and unsupervised machine learning is presented.In addition, deep learning-based classification methods are categorized into Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and the Autoencoder.Then, CNN-based classification schemes are further categorized into conventional CNN, transfer learning, and other advancements in CNN.A brief discussion of these schemes and their importance in ALL classification are also presented.Moreover, a critical analysis is performed to present a clear idea about the recent research in this field.Finally, various challenging issues and future scopes are discussed that may assist readers in formulating new research problems in this domain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤雄完成签到,获得积分20
1秒前
飞翔的霸天哥应助落点825采纳,获得30
1秒前
1秒前
UMEKO发布了新的文献求助80
2秒前
2秒前
科研通AI2S应助奋斗夏旋采纳,获得10
2秒前
2秒前
suirenshi发布了新的文献求助200
2秒前
2秒前
烟花应助茶米采纳,获得10
3秒前
liang发布了新的文献求助10
3秒前
sasogmp发布了新的文献求助10
3秒前
4秒前
niNe3YUE应助yyanxuemin919采纳,获得10
4秒前
哥哥发布了新的文献求助10
5秒前
5秒前
winwin发布了新的文献求助100
6秒前
古德曼发布了新的文献求助10
6秒前
6秒前
贪玩的书包完成签到,获得积分10
8秒前
8秒前
yao完成签到,获得积分10
8秒前
8秒前
科研狗发布了新的文献求助10
8秒前
8秒前
qinqin发布了新的文献求助20
8秒前
9秒前
9秒前
完美映冬发布了新的文献求助30
9秒前
浮游应助xiaobai123456采纳,获得10
10秒前
wanghe完成签到,获得积分10
10秒前
SPRETEND发布了新的文献求助10
11秒前
NexusExplorer应助汤雄采纳,获得10
12秒前
peter发布了新的文献求助10
12秒前
乐乐应助Tylose采纳,获得10
12秒前
shx2pi发布了新的文献求助10
12秒前
畅畅发布了新的文献求助10
12秒前
13秒前
constant完成签到,获得积分10
13秒前
20发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556899
求助须知:如何正确求助?哪些是违规求助? 4641934
关于积分的说明 14666491
捐赠科研通 4583546
什么是DOI,文献DOI怎么找? 2514242
邀请新用户注册赠送积分活动 1488653
关于科研通互助平台的介绍 1459298